: MS48MLR *LoRa N T M dbude tewa

tbin/M IMe / 0Ma2 Ma a 200oA z00Ga2 0Gatew y96d

dels/MS48-LR_LoRaWAN_To_Modbus_Gateway/)

MS48-LR -- LoRaWAN-zu-Modbus-Gateway

Zuletzt geändert von Kilight Cao (/xwiki/bin/view/XWiki/Kilight) am 19.07.2024 um 15:22 Uhr

Inhaltsverzeichnis:

- 1. Einleitung
 - 1.J Was ist MS48-LR
 - ° 1.2 Wie funktioniert es?
 - 1.3 Spezifikationen
- 1.4 Funktionen
- 1.5 LED-Anzeigen
- 1.6 RS485- und RS232-Schnittstelle
- 1.7 Tastenbedienung
- 1.8 Installation
- 2. Schnellstart
 - 2.1 Zugriff auf MS48-LR und Konfiguration
 - 2.1.1 IP-Adresse von MS48-LR suchen
 - Methode 1: Verbindung über MS48-LR WiFi
 - Methode 2: Verbindung über Ethernet mit DHCP-IP vom Router
 - Methode 3: Verbindung über die Fallback-IP von MS48-LR
 - Methode 4: Verbindung über WLAN mit DHCP-IP vom Router
 - 2.1.2 Zugriff auf die konfigurierte Web-Benutzeroberfläche

° 2.2 Typische Netzwerkkonfiguration

- 2.2.1 Übersicht
- 2.2.2 Verwenden Sie den WAN-Port für den Zugriff auf das Internet
- 2.2.3 Zugriff auf das Internet als WLAN-Client
- 2.2.4 Integriertes 4G-Modem für den Internetzugang verwenden
- 2.2.5 Internetverbindung überprüfen
- 2.3 LoRaWAN-Netzwerk mit Modbus neMork verbinden
 - Schritt 1: Konfigurieren Sie das LoRa-Funkgerät entsprechend dem Frequenzplan für Ihre Region
 - Schritt 2: Kopieren Sie die eindeutige Gateway-EUI und konfigurieren Sie die LoRaWAN-Serveradresse
 - Schritt 3: Aktivieren Sie den integrierten LoRaWAN-Netzwerkserver
 - Schritt 4: Anmelden beim integrierten LoRaWAN-Netzwerkserver
 - Schritt 5: Registrieren Sie das Gateway beim integrierten ChirpStack
 - Schritt 6: Registrieren Sie den Sensorknoten beim integrierten ChirpStack
 - 1) Geräteprofile hinzufügen
 - 2) Endknotengerät hinzufügen
 - Schritt 7: Modbus RTU/TCP-Slave konfigurieren
 - 1) RTU-Modus:
 - 2) TCP-Modus:
 - 3) PLC(Modbus-Server/Master)-Datenanzeige:
 - Schritt 8: Konfigurieren Sie die Sensor-Decodierung für den integrierten Chirpstack

1) Sensor-Decodierung zu Chirpstack hinzufügen

2) Überprüfen Sie die Dekodierung auf ChiprStack

Schritt 9: Konfigurieren Sie die Modbus RTU/TCP-Slave-Sensor-

Decodierung PLC (Modbus-Server/Master) Datenanzeige: ° 2.4 Daten für bestimmte Fport-SPS (Modbus-Server/Master) in

Registern akzeptieren Daten anzeigen:

- 3. Webkonfigurationsseiten
 - 3.1 Startseite
 - 3.2 LoRa-Einstellungen
 - 3.2.1 LoRa --> LoRa
 - 3.3 LoRaWAN-Einstellungen
 - 3.3.1 LoRaWAN --> LoRaWAN Semtech UDP
 - 3.3.2 LoRaWAN --> LoRaWAN-Basisstation
 - 3.4 Netzwerkeinstellungen
 - 3.4.1 Netzwerk --> WLAN
 - 3.4.2 Netzwerk --> Systemstatus
 - 3.4.3 Netzwerk --> NeMork
 - 3.4.4 Netzwerk --> Mobilfunk
 - ° 3.5 System
 - 3.5.1 System --> Systemübersicht
 - 3.5.2 System --> System allgemein
 - 3.5.3 System --> Sichern/Wiederherstellen
 - 3.5.4 System --> Remoteit
 - 3.5.5 System --> Paketverwaltung
- 4. Integrierter Server
 - 4.1 LoRaWAN-Netzwerkserver ChirpStack
 - 4.2 Anwendungsserver Node-Red

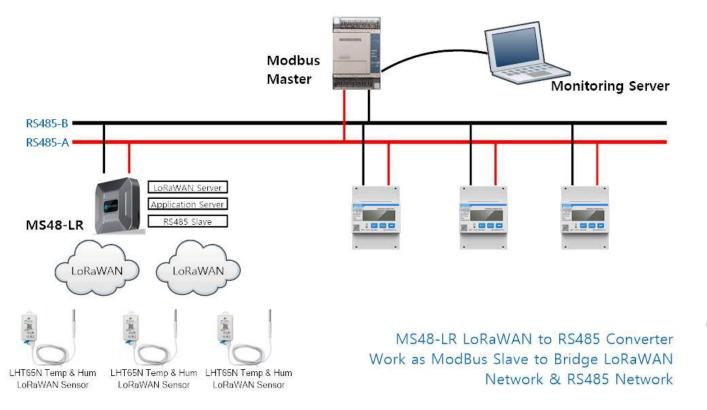
Verwendung von Node-Red, InfluxDB und Grafana

- Aktualisieren Sie node.js
- 5. RS232-Schnittstelle verwenden
 - ° 5.1 Node-Red mit lokalem ChirpStack verbinden
- 6. RS485-Schnittstelle verwenden
 - 6.1 Initialisieren Sie GPIO21
 - 6.2 RS485-Tx-Modus einstellen
 - 6.3 RS485-Rx-Modus einstellen
- 7. Weitere Dienste

1. Einführung

1.1 Was ist MS48-LR?

Das MS48-LR ist ein Open-Source-LoRaWAN-zu-Modbus-Gateway. Es ermöglicht Ihnen, das LoRa-Funknetzwerk über WLAN, Ethernet oder Mobilfunk (optionales 4G-Modul) mit einem IP-Netzwerk zu verbinden. Das LoRa-Funknetzwerk ermöglicht es Benutzern, Daten zu senden und extrem große Reichweiten bei niedrigen Datenraten zu erreichen.


Der MS48-LR ist vollständig kompatibel mit dem LoRaWAN-Protokoll. Der MS48-LR verfügt über einen integrierten LoRaWAN-Server und IoT-Server. Benutzer können verschiedene LoRaWAN-Geräte anschließen und über PLC über Modbus neMork auf diese Geräte zugreifen.

Verschiedene Länder verwenden unterschiedliche LoRaWAN-Frequenzbänder. MS48-LR verfügt über vorkonfigurierte Bänder. Benutzer können die in tL neMork zu verwendenden Frequenzbänder auch individuell anpassen.

MS48-LR unterstützt die Fernverwaltung. Systemintegratoren können das Gateway einfach fernüberwachen und warten.

1.2 Wie funktioniert das?

Das MS48-LR kann als Modbus RS485-RTU-Slave betrieben werden, der die Daten aus den LoRaWAN-Sensor-Uplink-Daten in die Register des Funktionscodes 03 schreibt.

J.3 Spezifikationen

Hardware-System:

- CPU: Quad-Core Cortex-A7 1,2 GHz
- RAM: 512 MB
- eMMC: 4 GB

Schnittstelle:

- 10M/1 OOM RJ45-Anschlüsse x 1
- Mehrkanal-LoRaWAN-Funk
- WiFi 802.1 1 b/g/n
- USB 2.0-Host-Anschluss x 1
- Mini-PCI-E-Anschluss x 1
- RS485-Schnittstelle x 1
- RS232-Schnittstelle x 1

LoRa-Spezifikation:

- Empfindlichkeit bis zu -140 dBm mit SX1250 Tx/Rx-Frontend
- 70 dB CW-Störunterdrückung bei 1 MHz Offset
- Betrieb mit negativem SNR möglich, CCR bis zu 9 dB
- 8 x 8 Kanäle LoRa-Paketdetektoren, 8 x SF5-SF12 LoRa-Demodulatoren, 8 x SF5-SF1 0 LoRa-Demodulatoren, 125/250/500 kHz LoRa-Demodulator und 1 x (G)FS£
- Duale digitale TX- und RX-Funk-Frontend-Schnittstellen
- 10 programmierbare parallele Demodulationspfade
- Dynamische Datenratenanpassung (DDR)
- Echte Antennendiversität oder simultaner Dualband-Betrieb Mobilfunk 4G

LTE (optional):

- Quectel: EC25 LTE-Modul (https://www.quectel.com/product/ec25minipcie.htm)
- SIM-Steckplatz in Standardgröße
- 2 x 4G-Aufkleberantenne.
- Bis zu 150 Mbit/s Downlink- und 50 Mbit/s Uplink-Datenraten
- Weltweite LTE-, UMTS/HSPA+- und GSM/GPRS/EDGE-Abdeckung
- Die MIMO-Technologie erfüllt die Anforderungen an Datenrate und Verbindungszuverlässigkeit in drahtlosen Modemkommunikationssystemen

Betriebsbedingungen:

- Betriebstemperatur: -20 bis 70 °C
- Lagertemperatur: -20 bis 70 °C
- Stromversorgung: 12 V, 2 A, Gleichstrom

1.4 Merkmale

- Open-Source-Debian-System
- Verwaltung über Web-GUI, SSH über WAN oder WiFi
- Fernverwaltung
- Automatische Bereitstellung für Batch-Bereitstellung und -Verwaltung

10 programmierbare parallele Demodulationspfade

 Vorkonfiguriert zur Unterstützung verschiedener regionaler LoRaWAN-Einstellungen. Ermöglicht die Anpassung regionaler LoRaWAN-Parameter.

Verschiedene Arten von LoRaWAN-Verbindungen, wie z. B.

- Semtech UDP-Paketweiterleitung
- LoRaWAN Basic Station
- ChirpStack-Gateway-Bridge (MQTT)

Integrierter lokaler LoRaWAN-Server von ChirnStack

- Integrierter lokaler Node-Red-Anwendungsserver
- Funktion als Modbus-Slave-Modus

1.5 LED-Anzeigen

MS48-LR verfügt über insgesamt vier LEDs:

- ► LED 1 (ETH-LED): Diese GRÜNE LED blinkt GRÜN, wenn der ETH-Port eine Verbindung herstellt.
- ► LED 2 (RET-LED): Diese GRÜNE LED zeigt je nach Status unterschiedliche Farben an:

7 GRÜN LEUCHTEND: Wenn Sie die Umschalttaste 4–5 Sekunden lang gedrückt halten, lädt das Gerät das Netzwerk neu und initialisiert die WLAN-Konfiguration. Diese GRÜNE LED leuchtet, bis der Neuladevorgang abgeschlossen ist.

7- S GRÜN BLINKEND: Wenn Sie die Umschalttaste 10 Sekunden lang gedrückt halten, stellt das Gerät die Werkseinstellungen wieder her. Diese GRÜNE LED blinkt GRÜN, bis der Vorgang abgeschlossen ist.

beendet ist.

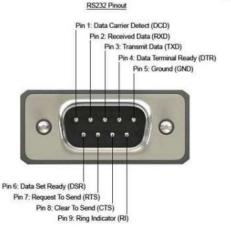
- ► LED 3: Diese GRÜNE LED ist nicht definiert.
- ➤ LED 4 (Power-LED): Diese GRÜNE LED leuchtet dauerhaft, wenn das Gerät ordnungsgemäß mit Strom versorgt wird.
- LED 5 (WIFI-LED): Diese LED zeigt den Verbindungsstatus der WIFI-Schnittstelle an.

7 GRÜN LEUCHTEND: Das Gerät aktiviert den WiFi-WAN-Client und stellt erfolgreich eine Verbindung zum WiFi her.

7 GRÜN BLINKEND: Die Verbindung des WiFi-WAN-Clients des Geräts ist fehlgeschlagen.

7 AUS: Der WiFi-WAN-Client des Geräts ist nicht aktiviert.

➤ LED 6 (SYS LED): Diese GRÜNE LED zeigt je nach Status unterschiedliche Farben an:


7 GRÜN LEUCHTEND: Das Gerät ist aktiv und mit einem LoRaWAN-Server verbunden.

7 GRÜN BLINKEND: a) keine LoRaWAN-Verbindung oder b) Gerät befindet sich in der Startphase. In dieser Phase blinkt die LED mehrere Sekunden lang GRÜN und blinkt dann zusammen mit

AUS: Das Gerät hat keine Internetverbindung.

1.6 RS485- und RS232-Schnittstelle

1.7 Tastenbeschreibung

Das MS48-LR verfügt über vier schwarze Tasten, nämlich:

RST: Drücken und loslassen, woraufhin das Gateway neu startet

LED-Status: Alle LEDs sind ausgeschaltet, mit Ausnahme der LED 4 (Power-LED).

Umschalten:

➤4–5 Sekunden lang drücken: Das Gateway lädt NeMork neu und initialisiert die WLAN-Konfiguration.

LED-Status: LED 2 (RET-LED) leuchtet GRÜN, bis der Neuladenvorgang abgeschlossen ist.

▶ Länger als 10 Sekunden gedrückt halten: Das Gateway stellt die Werkseinstellungen wieder her.

 $\textbf{LED-Status:} \ \mathsf{LED} \ \mathsf{2} \ (\mathsf{RET-LED}) \ \mathsf{blinkt} \ \mathsf{gr\"{u}n}, \ \mathsf{bis} \ \mathsf{die} \ \mathsf{Wiederherstellung} \ \mathsf{abgeschlossen} \ \mathsf{ist}.$

1.8 Installation

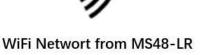
2. Schnellstart

Der MS48-LR unterstützt den Zugriff auf neMork über eine Ethernet- oder WLAN-Verbindung und läuft ohne Netzwerk. In den meisten Fällen müssen Sie zunächst den MS48-LR für neMork zugänglich machen.

2.1 Zugriff auf und Konfiguration des MS48-LR

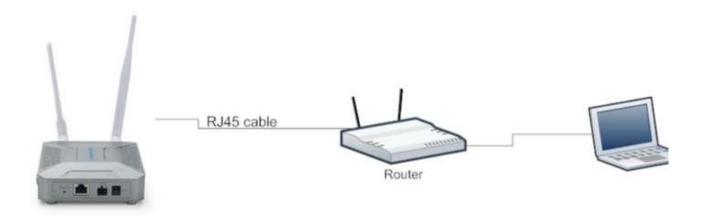
2.1.1 IP-Adresse des MS48-LR ermitteln

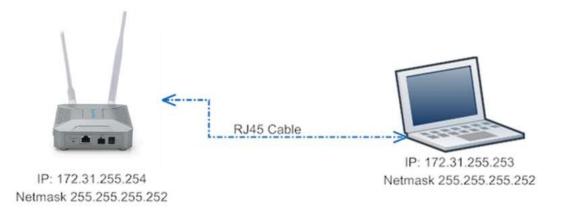
Methode 1: Verbindung über MS48-LR-WLAN


Beim ersten Start des MS48-LR wird automatisch ein WLAN-neMork mit dem Namen zfrag7no-xxxxxx und dem Passwort

dragino+dragino

Der Benutzer kann sich mit einem PC mit diesem WLAN-Netzwerk verbinden. Der PC erhält eine IP-Adresse 1 0.130.1.xxx und der MS48-LR hat die Standard-IP 10.130.1.1




Methode 2: Verbindung über Ethernet mit DHCP-IP vom Router

Verbinden Sie den Ethernet-Anschluss des MS48-LR mit Ihrem Router, damit der MS48-LR eine IP-Adresse von Ihrem Router beziehen kann. Im Verwaltungsportal des Routers sollten Sie die IP-Adresse sehen, die der Router dem MS48-LR zugewiesen hat.

Sie können diese IP-Adresse auch für die Verbindung verwenden.

Methode 3: Verbindung über die Fallback-IP des MS48-LR

Schritte zum Herstellen einer Verbindung über die Callback-IP:

- 1. Verbinden Sie den Ethernet-Anschluss des PCs mit dem WAN-Anschluss des MS48-LR.
- 2. Konfigurieren Sie den Ethernet-Anschluss des PCs mit der IP-Adresse: 172.31.255.253 und der Netzmaske: 255.255.255.255

Einstellungen --> Netzwerk & Internet --> Ethernet -> Erweiterte Freigabeoptionen ändern -> Doppelklick auf "Ethernet" -> Internetprotokoll Version 4 (TCP/IPv4) Wie in der folgenden

Abbildung gezeigt:

Video mit den Schritten zur Konfiguration des Ethernet-Anschlusses des Computers: fallback ip.mp4 (/xwiki/bin7download/Main/User9620Manual9620for9620All9620Gateway9620models/MS48-LR_LoRaWAN_To_Modbus_GatewayMebHome/fallback9620ip.mp4)

Wenn Sie immer noch nicht auf die Fallback-IP des MS48-LR zugreifen können, folgen Sie diesem Link, um das Problem zu beheben: Fehlerbehebung (http://www.mcien/holden.com/xwlklybln/view/Main/User4620Manual9620for4620All9620Gateway%20models/HPOC/#H9.3A0FallbackIPdoesnotwork2Chowcani

3. Verwenden Sie auf dem PC die IP-Adresse 172.31.255.254, um über das Web oder die Konsole auf den MS48-LR zuzugreifen.

MS48-LR - LoRaWAN-zu-Modbus-Gateway - DRAGINO

Geben Sie die WLAN-Informationen ein, indem Sie das Kästchen ankreuzen und auf "Speichern und Anwenden" klicken.

WLAN-Konfiguration erfolgreich

2.1.2 Zugriff Konfigurieren der Web-Benutzeroberfläche

Webschnittstelle

öffnen Sie einen Browser auf dem PC und geben Sie die IP-Adresse des MS48-LR ein (abhängig von Ihrer Verbindungsmethode)

http://IP_ADDRES5 (http://ip_address/) oder http://172.31.255.254(http://I72.31.255.254(/) (Fallback-IP) Sie sehen die

Anmeldeschnittstelle von MS48-LR wie unten gezeigt.

Die Kontodaten für die Webanmeldung lauten:

Benutzername: root

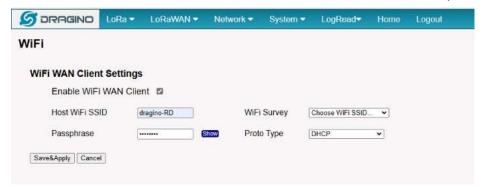
Passwort: dragino

2.2 Typische Netzwerkeinrichtung

2.2.1 Übersicht

MS48-LR unterstützt eine flexible Netzwerkeinrichtung für verschiedene Umgebungen. In diesem Abschnitt wird die typische Netzwerktopologie beschrieben, die in MS48-LR eingerichtet werden kann. Das typische Netzwerk umfasst:

- WAN-Port-Internetmodus
- WiFi-Client-Modus
- Mobilfunkmodus


2.2.2 Verwenden Sie den WAN-Port für den Zugriff auf das Internet.

Standardmäßig ist der MS48-LR so eingestellt, dass er den WAN-Port für die Verbindung mit einem Upstream-Netzwerk verwendet. Wenn Sie den WAN-Port des MS48-LR mit einem Upstream-Router verbinden, erhält der MS48 eine IP-Adresse vom Router und hat über den Upstream-Router Zugang zum Internet. Der neMork-Status kann auf der Startseite überprüft werden:

2.2.3 Zugriff auf das Internet als WLAN-Client

Im WLAN-Client-Modus fungiert MS48-IR als WLAN-Client und erhält DHCP von einem vorgelagerten Router über WLAN. Die Einstellungen für den WLAN-Client finden Sie unter Netzwerk --> WLAN

Wählen Sie in der WLAN-Übersicht den WLAN-Zugangspunkt aus, geben Sie die Passphrase ein und klicken Sie auf "Speichern & Anwenden", um die Verbindung herzustellen.

2.2.4 Verwenden Sie das integrierte 4G-Modem für den Internetzugang.

Benutzer können anhand der Aufschrift "EC25" auf dem Etikett des Gateways erkennen, ob das MS48-LR über ein 3G/4G-Mobilfunkmodem verfügt.

Wenn das MS48-LR über ein 3G/4G-Mobilfunkmodem verfügt, kann der Benutzer es als Haupt-Internetverbindung oder als Backup verwenden.

Installieren Sie zunächst die Micro-SIM-Karte wie unten beschrieben

Schalten Sie anschließend das MS48-LR aus und wieder ein, damit es die SIM-Karte erkennt.

Die Einrichtungsseite finden Sie unter "Netzwerk" --> "Mobilfunk".

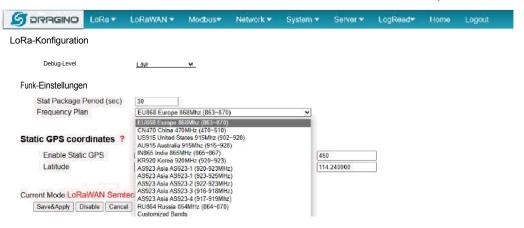
Wenn das Mobilfunknetz als Backup-WAN verwendet wird, nutzt das Gerät das Mobilfunknetz für die Internetverbindung, solange der WAN-Port oder das WLAN nicht verfügbar sind, und wechselt nach der Wiederherstellung wieder zum WAN-Port oder WLAN.

Wiederherstellung wieder zum WAN-Port oder WLAN zurück.

Use Cellula	ar as Backup WAN		
APN	3gnet		
Service	UMTS / GPRS	v	
Dial Number	*99#		
Pincode	SIM Pincode		
Username	SIM Acct Username		
Password	SIM Acct Password	Show	

2.2.5 Überprüfen der Internetverbindung

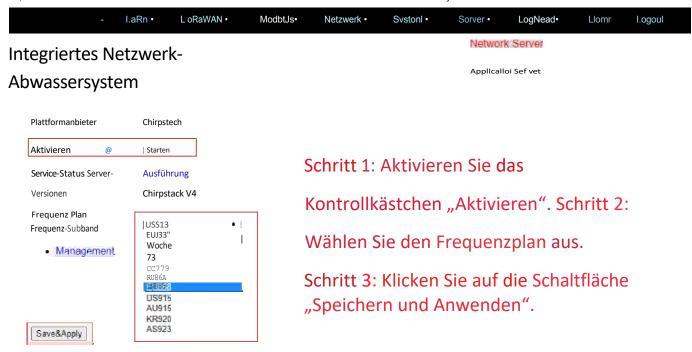
Auf der Startseite können wir die Internetverbindung überprüfen.


- GRÜNES Häkchen: Diese Schnittstelle verfügt über eine Internetverbindung.
- Gelbes Häkchen: Diese Schnittstelle verfügt über eine IP-Adresse, verwendet diese jedoch nicht für die Internetverbindung.
- : Diese Schnittstelle ist nicht verbunden oder hat keine Internetverbindung.

2.3 Brücke zwischen LoRaWAN-Netzwerk und Modbus-Netzwerk

Schritt 1: Konfigurieren Sie das LoRa-Funkgerät entsprechend dem Frequenzplan für Ihre Region

Der Frequenzplan muss genauso eingestellt werden wie der Frequenzplan des Sensorknotens.



Schritt 2: Kopieren Sie die eindeutige Gateway-EUI und konfigurieren Sie die LoRaWAN-Serveradresse

Jedes MS48-LR verfügt über eine eindeutige Gateway-EUI. Die ID finden Sie auf der LoRaWAN Semtech-Seite: S DRAGINO LoRa ▼ LoRaWAN ▼ Modbus**▼** Network ▼ System ▼ Server -LogRead▼ Home Logout LoRaWAN Semtech UDP LoRaWAN-Konfiguration LoRaWAN Basic Stat per E-Allgemeine Einstellungen Mail ,dragino-lo6e6e dragino.com Gateway EUI 02817bfdfe106e6e Schritt 1: Gateway-EUI kopieren Primärer LoRaWAN-Server Service: Provider kindle In Noskid Built + Im Server • **Uplink**#P@fort **DownlinksTeiPort** 17000 1**/7**/200 Sekundärer LoRaWAN-Server Schritt 2: Wählen Sie den lokalen Host aus. Dienstanbieter Deaktivieren Paketfilter Primärer Abwasserkanal Fport-Filter ? | L.°yel G DevAddr Fil tBr ? Level 0 Sekundärer Server Fport Ftl1er |Le\'el 0 OevAddr <u>Filer</u> <u>Levsi 0</u> Add Filter Filter Value 1,2,3 or 018229B Filter lyne ~ Sene Name DELET Filter Ich lösche Current Mode: LoRaWAN Semtech UDP

Save&Apply | Cancel | ihlen Sie 3: Klicken Sie auf die Schaltfläche "Speichern und Anwenden"

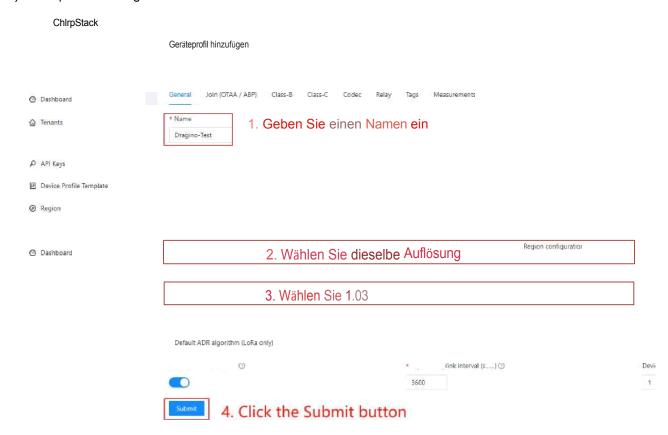
Schritt 3: Aktivieren Sie den integrierten LoRaWAN-Netzwerkserver

Schritt 4: Anmeldung beim integrierten LoRaWAN-Netzwerkserver

Anmeldeadresse: http://<Gateway-IP>:8080 Beispiel: http://10.J 30.1.1:8080

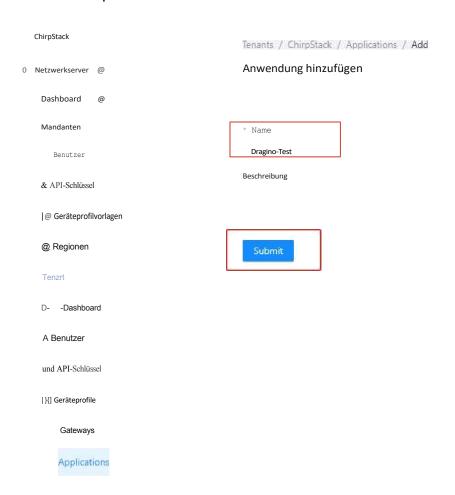
Schritt 5: Registrieren Sie das Gateway für das integrierte ChirpStack

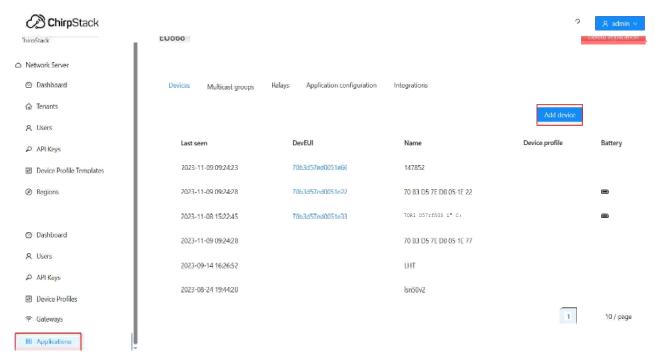
Kopieren Sie die Gateway-EUI aus dem vorherigen Schritt in die folgende Schnittstelle:


ChirpStack

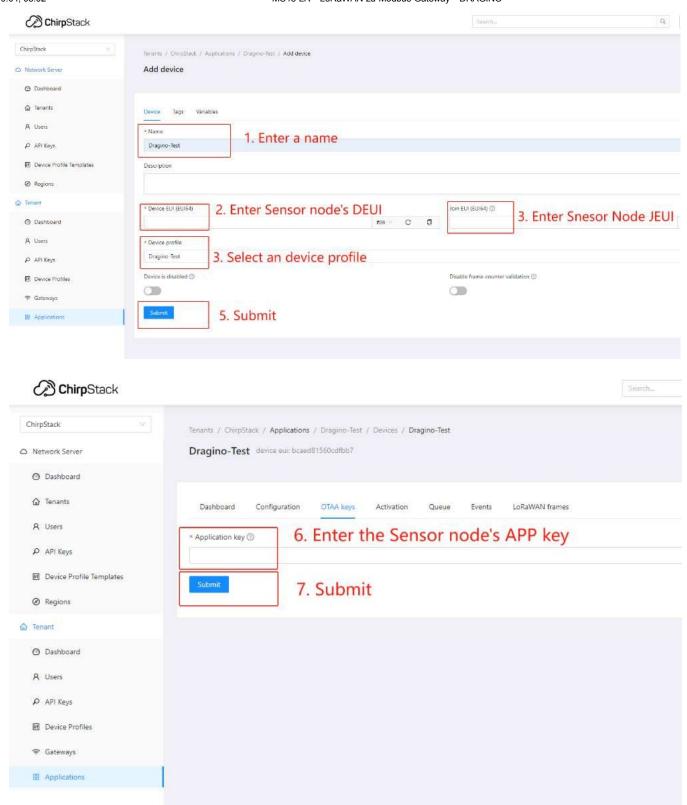
Schritt 6: Registrieren Sie den Sensorknoten im integrierten ChirpStack

Das Gateway ist bereits für die Verbindung mit dem integrierten ChirpStack-Netzwerk eingerichtet, sodass wir nun das integrierte ChirpStack konfigurieren müssen. Erstellen Sie in ChirpStack ein Gerät mit den OTAA-Schlüsseln von LHT65N.


1) Geräteprofile hinzufügen


2) Endknotengerät hinzufügen

Erstellen Sie eine Anwendung


ChirpStack

Gerät für den Sensorknoten hinzufügen

Geben Sie die Geräte-EUI, die Join-EUI (APP-EUI) und den APPKEY des Knotengeräts ein und wählen Sie das im vorherigen Schritt hinzugefügte Geräteprofil aus.

Schritt 7: Modbus RTU/TCP-Slave konfigurieren

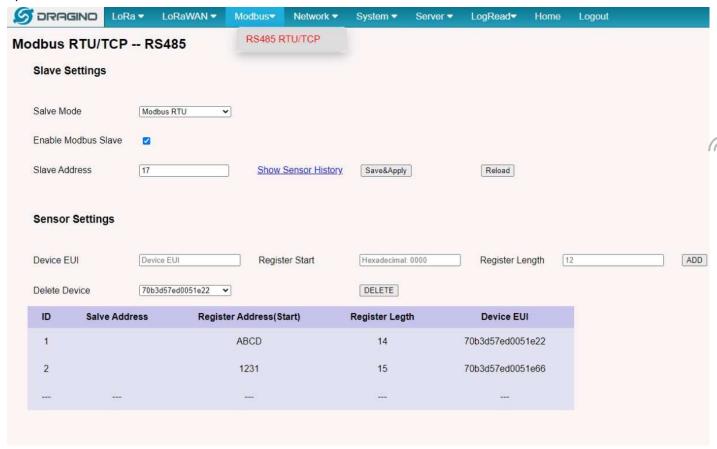
Das Gateway kann als Modbus-RTU-Slave betrieben werden. Der Benutzer kann einen Bereich des Registers festlegen, um die Uplink-Daten eines Sensorknotens zu schreiben.

Beispiel: Es gibt einen Sensorknoten mit der EUI 70b3d57ed0051 e22, der Registerstart ist OxABCD und die Registerlänge beträgt 14, was bedeutet, dass die Uplink-Daten in das Register ab OxABCD geschrieben werden und die maximale Schreiblänge 14 Register nicht überschreiten darf.

 $\label{thm:policy:pol$

Hinweis: Da die Länge der Nutzlast für verschiedene Sensorknoten gleich ist, werden die Daten durch FFFF ersetzt, wenn die Länge der Daten größer als die Konfigurationslänge ist. Slave-Einstellung:

Slave-Modus ---> Unterstützt sowohl RTU- als auch TCP-


Modus Modbus-Slave aktivieren ---> Slave aktivieren

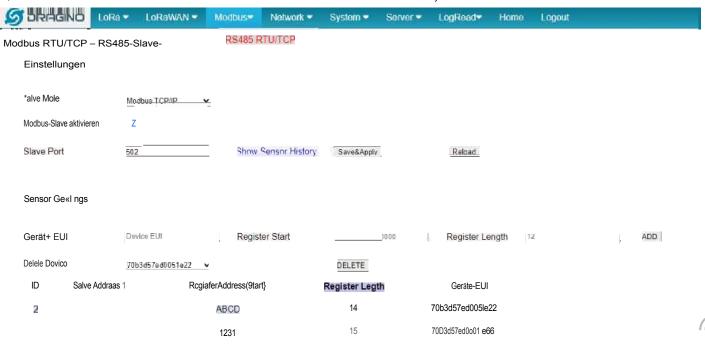
Slave-Adresse/Port ---> Slave-Adresse/Port einstellen

Sensorverlauf anzeigen ---> Sensordatenprotokoll anzeigen

Sensoreinstellunge
n: Geräte-EUI- ---> EUI des Sensorknotens
Register starten ---> Festlegen der Startregisteradresse zum Schreiben der Daten des Sensorknotens
Registerlänge ---> Die maximale Schreiblänge mit Register Hinweis: Es
kann nur 1 Sensor in den durch die Register festgelegten Bereich geschrieben
werden

1) RTU-Modus:

Nachdem der Sensorknoten auf dem integrierten Server Chirpstack aktiv ist, kann der Benutzer ihn zu dieser Seite hinzufügen und den Modbus RS485-RTU-Slave aktivieren. Dann schreibt MS48-LR die Uplink-Daten in das 03-Code-Register und zeichnet die Uplink-Daten auf.


SPS liest das MS48-LR-Register

Einstellungen:

Funktion: 03-Code Bitrate: 9600 Paritätsbit: keine Stoppbit: 1

Antwort-Timeout: größer als 3000 ms

2) TCP-Modus:

PLC liest das MS48-LR-Register Einstellungen:

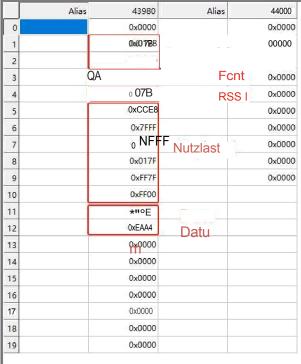
Funktion: 03 Code

IP-Adresse: Gateway-IP-Adresse Server-Port:

Slave-Port

Zeitüberschreitung bei der Verbindung: größer als 3000 ms

3) PLC-Daten (Modbus-Server/Master) anzeigen:


@g Modbus-Gebühr – Mbpoill

hjbpollJ

Datei bearbeiten Verbindung einrichten Funktionen anzeigen Fenster anzeigen Hilfe

) % B | :v |' | | s 1s 16 17 aa a3 |Tc | tR

Tx = 55: Err = 1: ID = 17: F = 03: SR = 1500ms

Verlaufsdaten:

Klicken Sie auf "Sensorverlauf anzeigen", um diese Seite zu öffnen.

- LuRu - LuRaWAN – ktudUus- Netwui k • SysleH • ServŁ'f = LotjRuad- Huii e Luguul

LIsten Liste

Sel .ction 70b3d57ed0051e22 ▼ Search

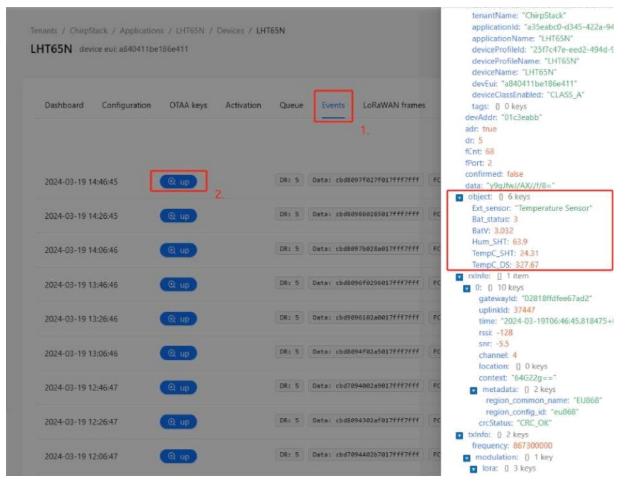
Anhören Frames


Zählen	9lave-Adresse	Geräte-EUI	Dav-Adresse	Fcnt	RS9J	Nutzlast	Datum
15543	17	70b3d57ed00fl \e22	017b8dJ0	14340	007c	cca87fltTflf017frTtff	6ü4ed220
15544	17	70b3d*7ed0051e22	017b8d19	14354	007c	cce87fff7fff017fffTfff	6S1ed274
15545	17	70ü3057ed0051e27	017bBdJ9	14355	007c	cce87fff7lff017fffTfff	öfi4ed2TB
15546	17	70b3d57ed0051e22	017b8dl9	14356	007c	cce87tffTIT 01T ffTtTf	G54ed280
15S47	17	70b3d57ed00S 1e22	017b8dJ9	14357	007d	cce87fff7fff017fff7flf	6S4ed286
15548	17	70bé57ed005le	017b8d19	14379	007c	cceg7fffTfff017fff7fff	Gfi4ed30a
15549	17	70b3d57 ed0051e22	017b8dT 9	14381	007a	cce87fff7lff017fffTfff	os1ea51g
1S550	17	'£0b3d57 ed0051e22	01 7bßdtS	14398	007c	cce 87fffYfff017fff?'tff	654ed3Zc
1M51	17	70b3d57ed0051o22	0J7b8d19	14405	007a	cca87flfTf4017ffl7f/f	654ed3a6
155S2	17	70b3d57 ed0051e22	017b8d19	14406	007d	cc+87ftf 7fff017fffTI11	G54ed3ac
USS 3	17	70b3d57 ed0O5 4e?7	017b8dl 9	14411	007c	cce87fff7fff017fff7tff	654ed3ca
15554	17	70b3d57ed0051 e22	017b8d I9	14419	007c	cce87fff7lTf017 ffTfff	054ed3fa
15555	17	70b3057ed0051e22	017b8dl9	14421	D07a	cce67flf7tff017ftf7flf	654ed406
15556	17	70b3d57od0051s22	017bßd19	14427	0C'7	cha 87fff7 fff017f1T7ffl	C54od42a
15S57	17	70b3dS7ed00S 1e22	017b8dJ9	1t428	007c	cce87fff7fff017fff7lfl	6S4ed430
15558	17	70b3d57ed0051e22	017b8d19	14435	007c	cce87fff7fff017fff7fff	654ed45a
15558	17	70b3d57ed0051e22	017b8dJ9	14140	007b	cce87fff7ffto17flTTfff	C54ed478
15560	17	f0büdS/ed0051 e2J	017b8d19	14410	fl0fd	cce87fff7fff017fff7fff	6fi4ed4b4

Schritt 8: Konfigurieren Sie die Sensor-Decodierung für den integrierten Chirpstack

1) Sensor-Decodierung zu Chirpstack hinzufügen

Benutzer finden den ChirpStack v4-Decodercode für den Dragino End-Knoten unter diesem Link: https://github.com/dragino/dragino-end-node-decoder (htrps://github.com/dragino/dragino-end-node-decoder) Das folgende Beispiel zeigt das Hinzufügen des LHT65N-Decoders:


ChirpStacx

ChirpStack

Payload codec ChirpStack lavaScript functions 3. Copy the LHT65N Chirpstack decoder code to the Chirpstack Codec △ Network Server Codec functions var hex= byte. toString(16); Dashboard var tap = 2-hex.length; return zero. substr(0, tap) + hex + " "; 21.1 A Users 23 function datalog(i, bytes) { 24 var Ext= bytes[6]&8x0F; API Kevs 25 yar bb; if((Exter 1')||(Exter 1')) n .De. 'ce P "'e Te npieie "°9'°°* 27:1 28 bb=parse#loat(((bytes[0+i]<<24>>)16 | bytes[1+i])/100).toFixed(2)); 29.1 else if (Ext== 2') Dashboard 31 bb=parseFloat(((bytes[0+i]<<24>>16 | bytes[1+i])/100).toFixed(2)); A Users 33] 34 else if (Ext== 4') API Keys 35 [36 var Exti_pin_level=bytes[0+i] ? "High": Low"; var Exti_status=bytes[1+i] ? "True": "False"; 38 bb=Exti_pin_level+Exti_status; Gateways 39 } else if (Ext== 5') 40 B Applications 41 1 bb=bytes[0+i]<<8 | bytes[1+i]; 42 43] else if (Ext== 0') 4. After the configure ,click the "Submit"

2) Überprüfen Sie die Dekodierung auf ChiprStack

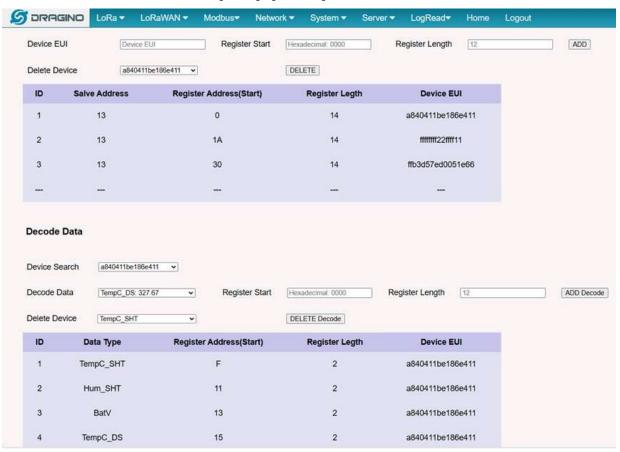
Schritt 9: Konfigurieren Sie die Modbus RTU/TCP-Slave-Sensor-Decodierung

Beispiel: Es gibt einen Sensorknoten mit der EUI a84041 1 bet 86e41 1, der Registerstart ist 0x0000 und die Registerlänge ist 14, was bedeutet, dass die Uplink-Daten in das Register ab 0x0000 geschrieben werden und die maximale Schreiblänge 14 Register nicht überschreiten darf.

Fügen Sie Decode Data TempC_SHT hinzu, die Register-Startadresse ist 0x000F und die Registerlänge ist 2, was bedeutet, dass Decode Data TempC_SHT in das Register 0x000F geschrieben wird und die maximale Schreiblänge 2 Register nicht überschreiten darf.

Somit werden die Uplink-Daten des Sensorknotens a840411 be186e411 in das Register 0x0000 - 0x000E geschrieben, und die Decode-Daten TempC_SHT werden in das Register 0x000F geschrieben.

Hinweis: Da die Länge der Nutzlast für verschiedene Sensorknoten gleich ist, werden die Daten durch FFFF ersetzt, wenn ihre Länge die Konfigurationslänge überschreitet.


Decodierte Daten:

Gerätetyp ---> Daten des Sensordekoders

Register Start ---> Festlegen der Startregisteradresse zum Schreiben der Decoderdaten des Sensorknotens

Registerlänge ---> Die maximale Schreiblänge mit Register

Hinweis: Es kann nur 1 Datenelement in den durch die Register festgelegten Bereich geschrieben werden

PLC(Modbus-Server/Master)-Datenanzeige:

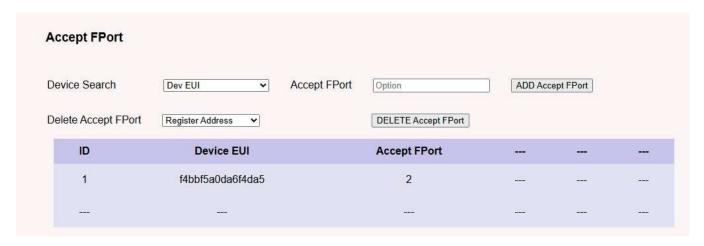
Hinweis: Da die decodierten Daten vom Typ Fließkomma sind, werden sie vor dem Schreiben in die Modbus-Register in eine Ganzzahl umgewandelt. Beispiel: 23,20 (tatsächliche Daten) ---> 2320 (Registeranzeige).

2.4 Daten für den angegebenen Fport in Register akzeptieren

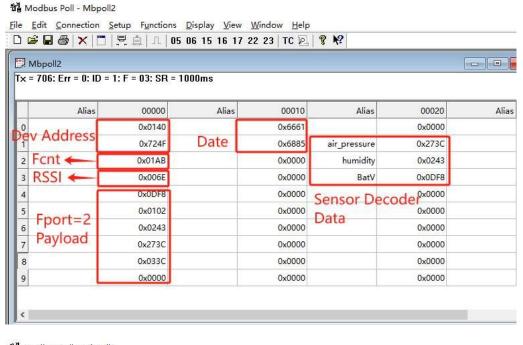
Beispielsweise gibt es einen Sensorknoten mit der EUI f4bbf5a0da6f4da5,

- die Sensor-Nutzlast-Uplink verwendet Fport=2
- und die Sensor-Status-Uplink verwendet Fport=5

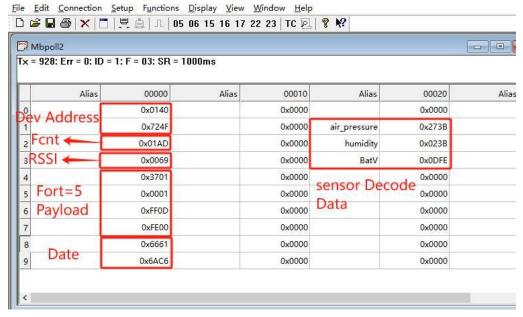
Wenn der akzeptierte Fport nicht sicher ist, kann dies dazu führen, dass die Register während des Status-Uplinks mit 0 decodierten Daten beschrieben werden, da Status-Uplinks in der Regel keine Daten decodieren.


Um zu vermeiden, dass 0-Daten in die Register geschrieben werden, können die Benutzer Accept Fport für den Sensor einstellen.

Das heißt, die Daten werden nur dann in das Register geschrieben, wenn der MS48-LR den Uplink des angegebenen Fort empfängt.


Akzeptieren Fport:

DevEUI ---> Sensorknoten DevEUI
Akzeptieren FPort ---> Einstellen des Akzeptieren


Fport

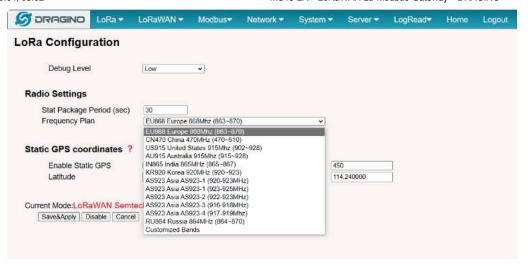
PLC(Modbus-Server/Master)-Daten anzeigen:

Modbus Poll - Mbpoll2

3. Webkonfigurationsseiten

3.1 Startseite

Zeigt den Betriebsstatus des Systems an:

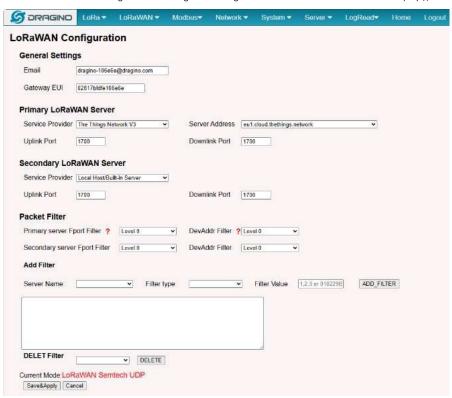

3.2 LoRa-Einstellungen

3.2.1 LoRa --> LoRa

Diese Seite zeigt die LoRa-Funk-Einstellungen. Es gibt eine Reihe von Standardfrequenzbändern gemäß dem LoRaWAN-Protokoll, und Benutzer können das Band* auch anpassen. Verschiedene MS48-LR-Hardwareversionen können unterschiedliche Frequenzbereiche unterstützen:

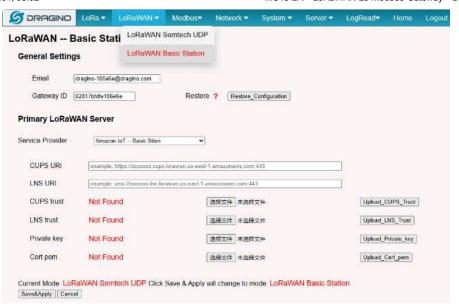
- 868: gültige Frequenz: 863 MHz 870 MHz. Für die Frequenzbänder EU868, RU864, IN865 oder KZ865.
- 915: gültige Frequenz: 902 MHz 928 MHz für die Bänder US915, AU9J5, AS923 oder KR920.

Nachdem der Benutzer den Frequenzplan ausgewählt hat, kann er die tatsächlich verwendete Frequenz auf der Seite "LogRead --> LoRa Log" einsehen.



Hinweis: Informationen zum Anpassen des Frequenzbands finden Sie in dieser Anleitung: So passen Sie das LoRaWAN-Frequenzband an - DRAGINO http://wiki.dragino.com/xwiki/bin/view/Main/How8'820to9fi20customized9620LoRaWAN8'fi20frequency9620band/)

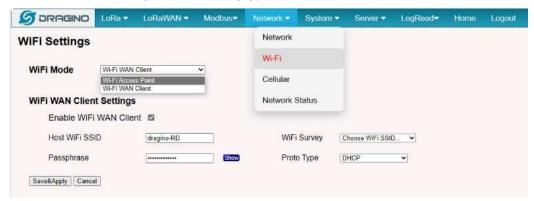
3.3 LoRaWAN-Einstellungen


3.3.1 LoRaWAN --> LoRaWAN Semtech UDP

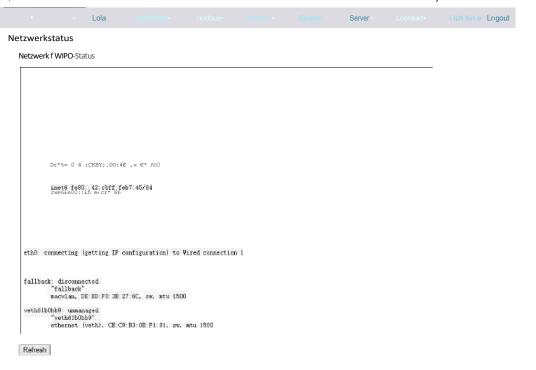
Diese Seite dient der Einrichtung einer Verbindung zu einem allgemeinen LoRaWAN-NeMork-Server wie TTN (http://www.thethingsnetwork.org/) oder ChirpStack (https://www.chirpstack)

3.3.2 LoRaWAN --> LoRaWAN Basic Station

Diese Seite dient der Einrichtung einer Verbindung zur TTN Basic Station, AWS-IoT usw.



Weitere Informationen und eine Demo zur Verwendung der LoRaWAN-Basisstation finden Sie in dieser Anleitung: Verwendung der LoRaWAN-Basisstation – DRAG NO (http://wiki.dragino.com/xwiki/bin/view/Main/Use9620of9620LoRaWAN9o20Basic9620Station/)


3.4 Netzwerkeinstellungen

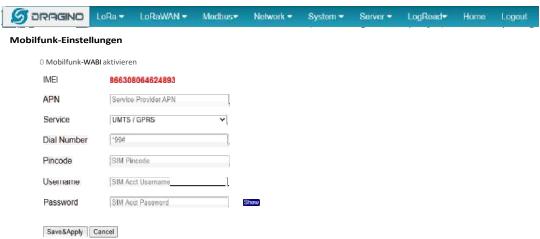
3.4.1 Netzwerk --> WLAN

Benutzer können das WLAN-WAN konfigurieren und den WLAN-Zugangspunkt auf dieser Schnittstelle aktivieren.



3.4.2 Netzwerk --> Systemstatus

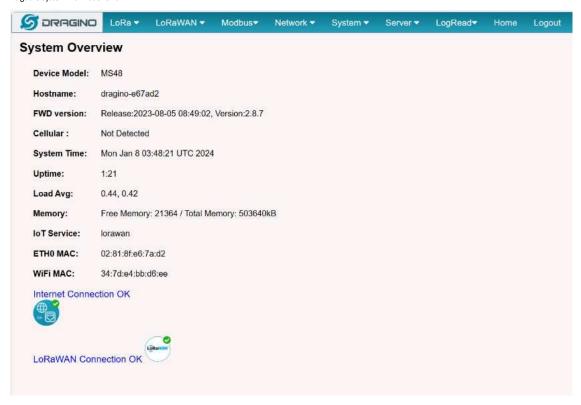
3.4.3 Netzwerk --> Netzwerk


In der Netzwerkschnittstelle "Netzwerk --> Netzwerk" können Benutzer die statische IP-Adresse für das Ethernet-WAN festlegen

3.4.4 Netzwerk --> Mobilfunk

In der Schnittstelle Netzwerk --> Mobilfunk können Benutzer Mobilfunk-WAN aktivieren und Mobilfunk konfigurieren.

Hinweis: APN darf nicht leer sein.



Nachdem die Konfiguration abgeschlossen ist, kehren Sie zur Startseite zurück und bewegen Sie den Mauszeiger auf das Mobilfunksymbol, um den Mobilfunkstatus zu überprüfen.

3.5 System

3.5.1 System --> Systemübersicht

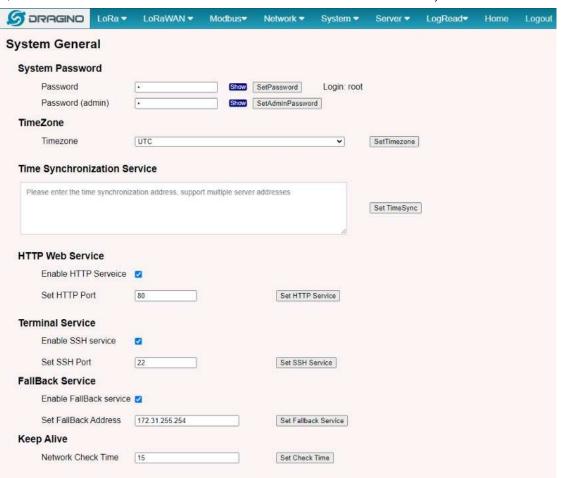
Zeigt die Systeminformationen an:

3.5.2 System --> System Allgemein

Es gibt zwei Anmeldungen für MS48-LR: root /dragino oder admin /dragino. Sowohl root als auch admin haben die gleichen Rechte für den WEB-Zugriff. Der root-Benutzer hat jedoch zusätzlich Zugriff auf das Linux-System. Der admin-Benutzer kann nur auf die WEB-Oberfläche zugreifen.

Auf dieser Seite können Sie das Passwort für diese Geräte festlegen.

Zeitzone: Legen Sie die Zeitzone des Geräts fest.

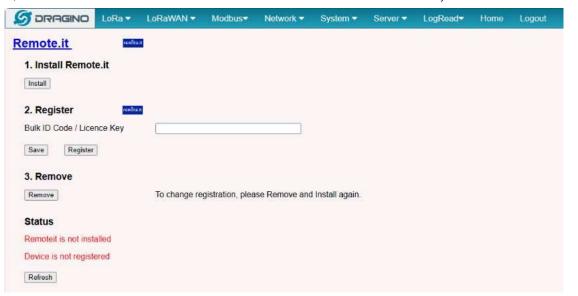

Zeitsynchronisationsdienst: Stellen Sie den Zeitsynchronisationsserver ein. HTTP-

<u>Webdienst:</u> Aktivieren/Deaktivieren Sie den HTTP-Dienst über die WAN-Schnittstelle.

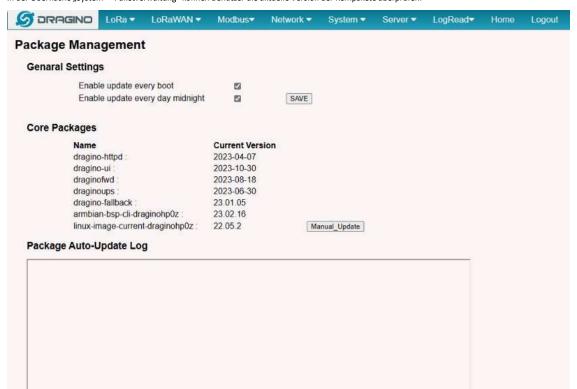
 $\underline{\text{Termina-Dienst:}} \, Aktivieren/\text{Deaktivieren Sie den SSH-Dienst } \ddot{\text{u}} \text{ber die WAN-Schnittstelle}.$

<u>Fallback-Einstellungen:</u> Aktivieren/Deaktivieren Sie die Fallback-Schnittstelle.

Keepalive-Skript: Legen Sie das Intervall für das Keepalive-Skript fest.


3.5.3 System --> Sichern/Wiederherstellen

3.5.4 System --> Remoteit


In der System-> Remoteit-Schnittstelle können Benutzer das Gateway so konfigurieren, dass es über Remote.it remote aufgerufen

werden kann. Die Benutzer können diesen Link zur Konfiguration heranziehen: Monitor & Remote Access Gateway (http:77wiki.dragino.com/xwiki/bin/view/Main/Monitor962096269620Remote9620Access9620Gateway/?Remote%20Access#H2.1A0RemoteAccessviaRemo

3.5.5 System --> Paketverwaltung

In der Oberfläche "System -> Paketverwaltung" können Benutzer die aktuelle Version der Kernpakete überprüfen.

4. Integrierter Server

Die Standard-Werksversion von MS48-LR wird mit dem integrierten Applicant-Server Node-Red und dem LoRaWAN-Server ChirpStack installiert.

Hinweis:

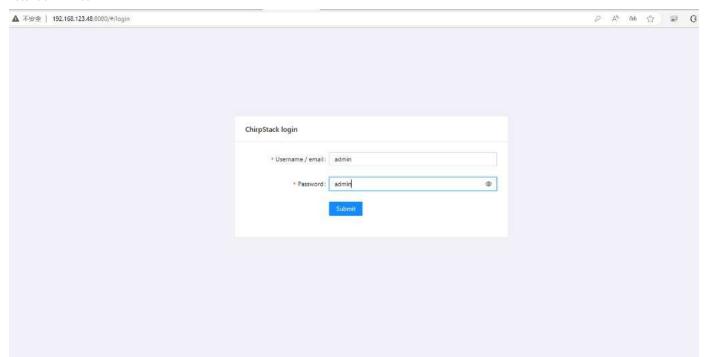
Pfad: Server --> Netzwerkserver Server --> Anwendungsserver

Fehlerbehebung:

1. Die URL springt nicht richtig

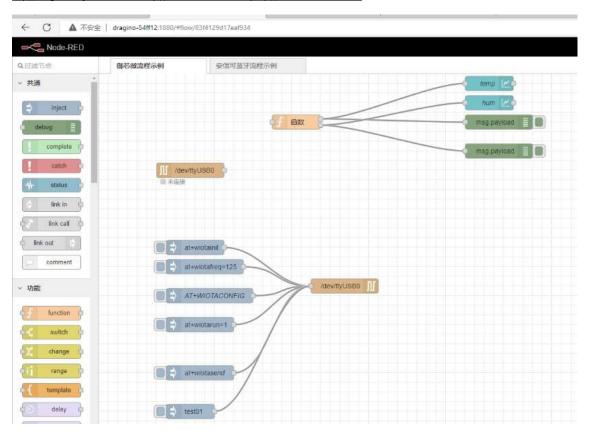
Für ChirpStack können Sie die lokale IP-Adresse und den Port 8080 verwenden, um darauf zuzugreifen.

Für Node-Red können Sie die lokale IP-Adresse und den Port 1880 verwenden, um darauf zuzugreifen.


4.1 LoRaWAN-Netzwerkserver – ChirpStack

Sie können über die URL (http://clocaMPV4-address) in Ihrem Browser auf den integrierten LNS-Server von ChirpStack des Gateways zugreifen.

Beispielsweise http://dragino-54ff12:8080 oder <a href="http://<Lokale-IPv4-Adresse">http://dragino-54ff12:8080 oder <a href="http://<Lokale-IPv4-Adresse">http://dragino-54ff12:8080 oder <a href="http://<Lokale-IPv4-Adresse">http://dragino-54ff12:8080 oder http://dragino-54ff12:8080 oder http://dragino-54ff1


Anmeldekonto:

Benutzemame: admin
Passwort: admin

4.2 Anwendungsserver – Node-Red

Sie können über die URL (http://clocal-lPV4-Adresse) in Ihrem Browser auf den integrierten AS-Server von **Node-Red** des Gateways zugreifen. Beispiel: http://dragino-54lif12:1880 oder http://clocaMPV4-Adresse)

Verwendung von Node-Red, InfluxDB und Grafana

Der MS48-LR unterstützt diese Kombination. Node-red ist standardmäßig vorinstalliert, InfluxDB und Grafana jedoch nicht.

Die Benutzer können diesen Link aufrufen, um sie zu installieren.

http://wiki.dragino.com/xwiki/bin/view/Main/Armbian9620OS9620instruction/#H2.6HowtoinstallGrafanaandinfluxdb (http://wiki.dragino.com/xwiki/bin/view/Main/Armbian9620OS9620instruction/#H2.6HowtoinstallGrafanaandinfluxdb)

Aktualisieren Sie node.js

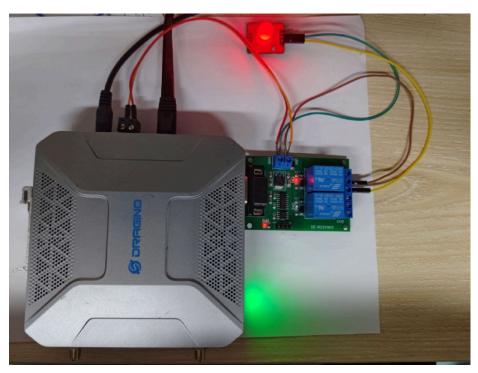
Standardmäßig verwendet MS48-LR node. is die vorinstallierte Version v12, die aufgrund von Debian ultra-stabil, aber auch ultra-alt ist.

Benutzer können diesen Link zum Aktualisieren verwenden.

http://wiki.dragino.com/xwiki/bin/view/Main/Armbian9620OS9620 instruction/#H2.5 How to upgrade the node js version to the latest. A property of the latest of the latest(http://wiki.dragino.com/xwiki/bin/view/Main/Armbian96200S9620instruction/#H2.5Howtoupgradethenodejsversiontothelatest.)

5. RS232-Schnittstelle verwenden

MS48-LR enthält einen lokalen ChirpStack-Server und Node-Red. Dieses Beispiel zeigt, wie Sie LHT65N für die Verwendung mit dem lokalen Node-Red-Server konfigurieren. In diesem Beispiel sind bereits vorhanden:

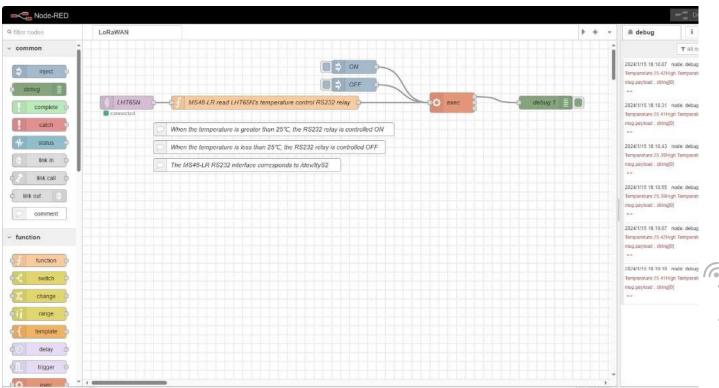

- LHT65N auf MS48-LR registriert ChirpStack-Server bereits integriert
- Der Benutzer kann die Daten auf der Seite des integrierten ChirpStack-Servers einsehen.
- Das RS232-Relais ist an die RS232-Schnittstelle des MS48-LR angeschlossen. Die

RS232-Schnittstelle des MS48-LR entspricht /dev/ttyS2.

Nachfolgend finden Sie die Schritte für das MS48-LR-Beispiel zum Auslesen des RS232-Relais der Temperatursteuerung des LHT6SN:

Example of RS232 relay control via LoRaWAN:

5.1 Verbinden Sie Node-Red mit Local ChirpStack


Benutzer können den Node-Red-Decoder über diesen Link herunterladen und in die Node-Red-Plattform importieren: MS48-LR liest das RS232-Relais zur Temperatursteuerung des LHT65N. (/xwiki/bin/download/Main/User9620Manual9620for9620All9620Gateway9620models/MS48-LR LORAWAN TO Modbus GatewayMebHome/MS48-LR'K20read9b20LHT65N'K27s%20temperature3620control9620RS2324620relay.json?rev=1.1)

Weitere Informationen zum Importieren von Input Flow finden Sie unter diesem Link: Importieren von Input Flow für Dragino-Sensoren (http://wiki.dragino.com/xwiki/bin/view/Main/No RED/#H3.A0ImportInputFlowforDraginoSensors)

Nach Abschluss des Imports von Input Flow muss der Benutzer das MQTT im Knoten bearbeiten

 $\label{thm:continuous} \mbox{Die konkreten Schritte finden Sie unter diesem Link: Beispiel: Verwendung des lokalen Servers ChirpStack und Node-Red Link: Die konkreten Schritte finden Sie unter diesem Link: Beispiel: Verwendung des lokalen Servers ChirpStack und Node-Red Link: Die konkreten Schritte finden Sie unter diesem Link: Beispiel: Verwendung des lokalen Servers ChirpStack und Node-Red Link: Die konkreten Schritte finden Sie unter diesem Link: Beispiel: Verwendung des lokalen Servers ChirpStack und Node-Red Link: Die konkreten Schritte finden Sie unter diesem Link: Die konkreten Sie unt$

(http://wiki.dragino.com/xwiki/bin/view/Main/Notes9620for9620ChirpStaclc/4H12.A0Example:UseLocalServerChirpStackandNode-RedinLPS8v2)

6. RS485-Schnittstelle verwenden

Die MS48-LR RS485-Schnittstelle entspricht /dev/ttyS1.

Im Folgenden sind die Schritte für die MS48-LR RS485-Schnittstelle zum manuellen Senden und Empfangen von Daten aufgeführt:

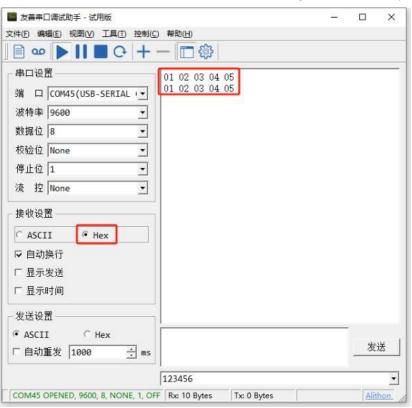
6.1 Initialisieren Sie GPIO21

Benutzer müssen den folgenden Befehl ausführen, um GPIO21 zu konfigurieren:

echo 21 > /sys/class/gpio/export echo "out" > /sys/class/gpio/gpio21/direction

6.2 RS485-Tx-Modus einstellen

Stellen Sie den MS48-LR RS485-Port auf den Tx-Modus ein, indem Sie den GPIO21-Pegel senken:


echo "0" > /sys/class/gpio/gpio21/value

Führen Sie den folgenden Befehl aus, um Hexadezimal-Daten zu senden:

echo -en "\x01 \x02\x03\x04\x05" > /dev/ttyS1

```
root@dragino-2d5d26:~# echo "0" > /sýs/class/gpio/gpio21/value
root@dragino-2d5d26:~# echo -en "\x01\x02\x03\x04\x05" > /dev/ttys1
root@dragino-2d5d26:~#
root@dragino-2d5d26:-#
```

Benutzer können das serielle Port-Tool verwenden, um die von MS48-LR RS485 gesendeten Daten zu überprüfen:

6.3 RS485-Rx-Modus einstellen

Stellen Sie den MS48-LR RS485-Port auf den Rx-Modus, indem Sie den GPIO21-Pegel anheben:

echo "1" > /sys/class/gpio/gpio21/value

Führen Sie den folgenden Befehl aus, um die vom MS48-LR RS485 empfangenen Daten zu überprüfen:

cat /dev/ttyS1 | xxd -p -u

7. Weitere Dienste

W 0 Tags:

Erstellt von Xiaoling (/xwiki/bin/view/XWiki/Xiaoling) am 2023/1 1/1 1 1 1 34

Keine Kommentare zu dieser Seite