

# Ser Guide FM432 – User Guide

## LoRaWAN IoT sensors for remote monitoring

## Document Ref FLD10068 version 1.2.3

## Product references:

- FM432e: electricity meter optical reading Ref: FM432e\_nc\_1mn, FM432e\_nc\_10mn, FM432e\_nc\_15mn, FM432e\_ap
- FM432ir: electricity infrared meter optical reading (SML protocol) Ref: FM432ir\_nc\_1mn, FM432ir\_nc\_15mn, FM432ir\_ap
- FM432g: gas meter optical reading (ATEX) Ref: FM432g\_nc\_10mn, FM432g\_nc\_15mn, FM432g\_ap
- FM432p-a: pulse reading (ATEX) Ref: FM432p-a\_nc\_10mn, FM432p-a\_nc\_15mn, FM432p-a\_ap
- FM432p-n: pulse reading (non-ATEX) Ref: FM432p-n\_nc\_10mn, FM432p-n\_nc\_15mn, FM432p-n\_ap
- FM432t: temperature measurement Ref: FM432t\_1mn, FM432t\_10mn, FM432t\_15mn





## **Firmware versions**

This documentation refers specifically to products including the following firmware versions. In most cases, data formats are the same for previous versions, but if you have a doubt, do not hesitate to contact <a href="mailto:support@fludia.com">support@fludia.com</a> and we will provide you with the correct document version and/or specific indications.

| Product family | Element           | Product references | Firmware version |
|----------------|-------------------|--------------------|------------------|
| FM432e         | Optical head      | FM432e_nc_1mn      | FM210em_v5.4     |
|                |                   | FM432e_nc_10mn,    | FM210em_v5.7     |
|                |                   | FM432e_nc_15mn     |                  |
|                |                   | FM432e_ap          | FM210em_v6.0     |
|                | Radio/battery box | All references     | BPR07_V3.3.7     |
| FM432ir        | Optical head      | FM432ir_nc_1mn     | FM210ir_v1.8     |
|                |                   | FM432ir_nc_15mn    | FM210ir_v2.0     |
|                |                   | FM432ir_ap         | FM210ir_v2.1     |
|                | Radio/battery box | All references     | BPR07_v3.3.7     |
| FM432g         | Optical head      | FM432e_nc_10mn,    | FM210g_v3.2      |
|                |                   | FM432e_nc_15mn     |                  |
|                |                   | FM432g_ap          | FM210g_v3.3      |
|                | Radio/battery box | All references     | BPR07_v3.3.8     |
| FM432p         | Radio/battery box | All references     | BPR07_v3.3.6     |
|                |                   |                    | BPR07_v3.3.9     |
| FM432t         | Radio/battery box | All references     | BPR07_v5.0.2     |



## **Revision history**

| Version | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date       |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.0.1   | New doc replacing ref FLD9492 (FM432e User Guide EN_v1.2.1), ref FLD9177 (FM432g User Guide EN_v1.2.1), ref FLD9899 (FM432p User Guide EN_v1.2.2), and a series of documents related to message decoding and data collect API                                                                                                                                                                                                                                                                    | 2022-05-16 |
| 1.0.2   | Corrections related to T1 message headers; Additional code examples.                                                                                                                                                                                                                                                                                                                                                                                                                             | 2022-05-25 |
| 1.0.3   | Completion of FM432t sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2022-05-30 |
| 1.0.4   | Adding FM432ir code examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2022-05-31 |
| 1.0.5   | FM432 instead of FM232 in the illustration (overview chapter)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2022-06-01 |
| 1.0.6   | Firmware version FM210ir_v1.6 replaces v1.2. Clarification (chapter 7.1): message contains 15 or 20 values depending on the type of meter.                                                                                                                                                                                                                                                                                                                                                       | 2022-08-24 |
| 1.0.7   | A Byte was missing in the T1 description for FM432ir (chapters 7.2 and 8.2)                                                                                                                                                                                                                                                                                                                                                                                                                      | 2022-10-11 |
| 1.0.8   | Adding JavaScript code examples for FM432e, FM432ir, FM432g, FM432p and FM432t.                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 1.1.0   | Correcting php code for FM432t. Technical messages headers. New FW versions for BPR07                                                                                                                                                                                                                                                                                                                                                                                                            | 2023-06-07 |
| 1.1.1   | <ul> <li>§7.6. correction: index is divided by 10. §8.2.6. correction: index field is signed. §8.6. correction: index is divided by 10. §6.3. Bytes #10 and #11 are « not used ». Page 2: firmware versions are specified in a table. « Battery status » is now called « Low battery ». §9.2. hex data example changed. §12.3. and §13.3. correction T2 message structure. §7.2.4. correction: OBIS 2.8.0 and not 2.0.8</li> <li>§9.5.3 correction: « Javascript » instead of « PHP »</li> </ul> | 2024-07-05 |
| 1.2.0   | §6, §9, §12, §14. new FM432x_ap firmware versions (easy remote parameter adjustments)                                                                                                                                                                                                                                                                                                                                                                                                            | 2024-07-31 |
| 1.2.1   | §4. description of Join and rejoin strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2024-08-20 |
| 1.2.2   | §9.2.4. Only 27 Bytes in the message and not 28                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2024-09-20 |
| 1.2.3   | §9.4. corrections in the T2 structure table                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2024-09-23 |



## Table of Contents

| 1. Ov   | verview                                                                       | 7           |
|---------|-------------------------------------------------------------------------------|-------------|
| 2. In   | istalling the sensors                                                         | 8           |
| 2.1     | Installing the FM432e (optical reading of electricity meters)                 | 8           |
| 2.2     | Installing the FM432ir (optical reading of electricity meters in Germany)     | 10          |
| 2.3     | Installing the FM432g (optical reading of gas meters)                         | 12          |
| 2.4     | Installing the FM432p (detecting meter pulse outputs: gas, water, elec, heat) | 13          |
| 2.5     | Installing the FM432t (measuring temperature)                                 | 14          |
| 3. Re   | eplacing batteries in a sensor                                                | 14          |
| 4. Jo   | pin and rejoin                                                                | 14          |
| 4.1     | Join strategy                                                                 | 14          |
| 4.2     | Rejoin strategy                                                               | 15          |
| 4.3     | Make a sensor forget its join                                                 | 15          |
| 5. Re   | emotely changing parameters                                                   | 15          |
| 6. De   | ecoding FM432e_ap messages                                                    | 16          |
| 6.1     | Types of messages                                                             | 16          |
| 6.2     | Data message (T1) structure                                                   | 17          |
| 6.3     | Service message (T2) structure                                                | 18          |
| 6.4     | Technical message #1 (TT1) structure                                          | 20          |
| 6.5     | Technical message #2 (TT2) structure                                          | 20          |
| 6.6     | Javascript decoder                                                            | 20          |
| 7. De   | ecoding FM432e_nc_1mn messages                                                | 21          |
| 7.1     | Types of messages                                                             | 21          |
| 7.2     | Data message (T1) structure                                                   | 21          |
| 7.3     | Service message (T2) structure                                                | 23          |
| 7.4     | Javascript decoder                                                            | 23          |
| 8. De   | ecoding FM432e_nc_10mn and FM432e_nc_15mn messages                            | 24          |
| 8.1     | Types of messages                                                             | 24          |
| 8.2     | Data message (T1) structure                                                   | 25          |
| 8.3     | Service message (T2) structure                                                | 26          |
| 8.4     | Technical message #1 (TT1) structure                                          | 27          |
| 8.5     | Technical message #2 (TT2) structure                                          | 27          |
| 8.6     | Javascript decoder                                                            | 27          |
| 9. De   | ecoding FM432ir_ap messages                                                   |             |
| 9.1     | Types of messages                                                             |             |
| 9.2     | Data message (T1) structure in the case of an infrared meter (mME)            |             |
| 9.3     | Data message (T1) structure in the case of an electromechanical meter         | 31          |
| 9.4     | Service message (T2) structure in the case of an infrared meter (mME)         |             |
| 9.5     |                                                                               |             |
| 9.6     |                                                                               |             |
| 10. De  | ecoding FM432ir_nc_1mn messages                                               |             |
| 10.1    |                                                                               |             |
| 10.2    |                                                                               |             |
| 10.3    | 3 Data message (T1) structure in the case of an electromechanical meter       |             |
| Overvie | ew                                                                            | Page 4 / 75 |



| 10.4     | Service message (T2) structure in the case of an infrared meter (mME)    |    |
|----------|--------------------------------------------------------------------------|----|
| 10.5     | Service message (T2) structure in the case of an electromechanical meter |    |
| 10.6     | Javascript decoder                                                       |    |
| 11. Dec  | oding FM432ir_nc_15mn messages                                           | 42 |
| 11.1     | Types of messages                                                        |    |
| 11.2     | Data message (T1) structure in the case of an infrared meter (mME)       |    |
| 11.3     | Data message (T1) structure in the case of an electromechanical meter    |    |
| 11.4     | Service message (T2) structure in the case of an infrared meter (mME)    |    |
| 11.5     | Service message (T2) structure in the case of an electromechanical meter |    |
| 11.6     | Javascript decoder                                                       |    |
| 12. Dec  | oding FM432g_ap messages                                                 | 48 |
| 12.1     | Types of messages                                                        |    |
| 12.2     | Data message (T1) structure                                              |    |
| 12.3     | Service message (T2) structure                                           |    |
| 12.4     | Technical message (TT1) structure                                        | 51 |
| 12.5     | Javascript decoder                                                       |    |
| 13. Dec  | oding FM432g_nc_10mn and FM432g_nc_15mn messages                         | 52 |
| 13.1     | Types of messages                                                        |    |
| 13.2     | Data message (T1) structure                                              |    |
| 13.3     | Service message (T2) structure                                           | 53 |
| 13.4     | Technical message (TT1) structure                                        |    |
| 13.5     | Javascript decoder                                                       |    |
| 14. Dec  | oding FM432p_ap messages (FM432p-a_ap and FM432p-n_ap)ap                 | 55 |
| 14.1     | Types of messages                                                        |    |
| 14.2     | Data message (T1) structure                                              | 55 |
| 14.3     | Service message (T2) structure                                           | 57 |
| 14.4     | Javascript decoder                                                       |    |
| 15. Dec  | oding FM432p-(a   n)_nc_10mn and FM432p-(a   n)_nc_15mn                  | 59 |
| 15.1     | Types of messages                                                        |    |
| 15.2     | Data message (T1) structure                                              |    |
| 15.3     | Service message (T2) structure                                           | 60 |
| 15.4     | Javascript decoder                                                       | 61 |
| 16. Dec  | oding FM432t_nc_1mn                                                      | 62 |
| 16.1     | Types of messages                                                        |    |
| 16.2     | Data message (T1) structure                                              |    |
| 16.3     | Service message (T2) structure                                           |    |
| 16.4     | Javascript decoder                                                       |    |
| 17. Dec  | oding FM432t_nc_10mn and FM432t_nc_15mn                                  | 65 |
| 17.1     | Types of messages                                                        |    |
| 17.2     | Data message (T1) structure                                              |    |
| 17.3     | Service message (T2) structure                                           |    |
| 17.4     | Javascript decoder                                                       |    |
| 18. Acce | essing the dashboard to check communication and data                     |    |
|          | ieving data from the server with the API                                 |    |
|          |                                                                          |    |



| 19.1                                                 | Device list request   | 70 |  |  |  |
|------------------------------------------------------|-----------------------|----|--|--|--|
| 19.2                                                 | Interval data request | 71 |  |  |  |
| 19.3                                                 | Index data            | 72 |  |  |  |
| 19.4                                                 | Message list          | 73 |  |  |  |
| 20. Cont                                             | act                   | 73 |  |  |  |
| 21. Annex A: product references and what they mean74 |                       |    |  |  |  |



## 1. Overview

|        |                | DateTime power (W)<br>22/06 11:10 500                    |
|--------|----------------|----------------------------------------------------------|
|        |                | 22/06 11:11 612<br>22/06 11:12 4782<br>22/06 11:13 1789  |
|        | LoRaWAN        | DateTime temp. (°C)<br>22/06 11:10 21.2                  |
| FM432t | FM432e LoRaWAN | 22/06 11:11 21.4<br>22/06 11:12 21.9<br>22/06 11:13 22.2 |

The basic principle of this remote monitoring solution is to have IoT sensors (FM432x on the graph) using LoRa long range radio to transfer measurement messages to a LoRaWAN Network.

## The different types of sensors available are:

- FM432e: optical reading of electricity meters (detecting rotating disk, or blinking light)
- FM432ir: optical reading of electricity meters in Germany (detecting rotating disk, or infrared port with SML protocol)
- FM432g: optical reading of gas meters (detecting digit rotation)
- FM432p: detecting pulse outputs of some meters (gas, water, electricity, heat...)
- FM432t: measuring temperature

The newest references with "\_ap" suffix (FM432\_ap, FM432ir\_ap...) include the possibility to remotely change parameters like measurement frequency and remotely set a redundancy feature.

The installation process consists of two main steps:

- 1. Installing the sensors: sticking the optical sensor to the existing meter, or connecting the wires, or just positioning the box, depending on the type of sensor.
- 2. Joining the LoRaWAN Network: starting up the sensor so that it sends join requests to the LoRaWAN Network (on which it must have been previously registered)

Retrieving the data can be done in one of three ways:

- Directly decoding the messages received by the LoRaWAN Network
- Connecting to the server's API <u>https://fm430-api.fludia.com/v1/API/</u> (if a callback has been set up between the LoRaWAN Network and Fludia data server)
- Selecting data and downloading related files from the dashboard (if a callback has been set up between the LoRaWAN Network and Fludia data server)



## 2. Installing the sensors

## 2.1 Installing the FM432e (optical reading of electricity meters)

First identify the type of meter you want to measure. It could be either an electronic electricity meter (with a blinking light) or an electromechanical electricity meter (with a rotating disk).

In case the **white cable** is plugged in the radio/battery box, it is recommended to **unplug it (**and leave only the optical side connected) **before proceeding** with the installation.

<u>If it is an electronic meter</u>, you must position the optical head **switch on B**, and if it is an **electromechanical meter**, you must position the **switch on A**:





If it is an **electronic meter**, stick the adhesive plastic mount on the meter in front of the meter blinking light (aim through the hole)

Then, position the optical head on top of the plastic mount and tight the black screw.



Stick the system on the meter glass panel, making sure the two arrows are perfectly aligned with the meter

disk (face the meter and keep your eyes at disc level for better result):

If the arrows are not completely lined up with the disc, loosen the screw, adjust position, and tighten the screw.





Connect the white cable between the optical head and the FM432 battery/radio box.

In the case of an electromechanical meter, make sure the optical head is still perfectly aligned with the disk.



The FM432e starts measuring and tries to join the LoRaWAN network.

The optical head LEDs (lights) should blink this way:

- 1. Calibration: red LED blinks for 20 seconds.
- 2. Validation: green LED blinks every time the meter light blinks (electronic meter) or every time the disk mark (black or red) comes in front of the sensor (electromechanical meter).
- 3. After 3 minutes, the green light stops completely to avoid wasting battery load.

The LEDs on the radio/battery box show the progress of the join process:

- Red and Green LED blinking together (join in progress)
- Green LED blinking alone (join successful)
- Red LED blinking alone (join failed)





## 2.2 Installing the FM432ir (optical reading of electricity meters in Germany)

First identify the type of meter you want to measure. It could be either an mME electricity meter (with an infrared port supporting SML protocol) or an electromechanical electricity meter (with a rotating disk).

In case the **white cable** is plugged in the radio/battery box, it is recommended to **unplug it (**and leave only the optical side connected) **before proceeding** with the installation.

If it is an **mME meter**, you must position the optical head **switch on B**, and if it is an **electromechanical meter**, you must position the **switch on A**:





<u>If it is an **mME meter**</u>, stick the adhesive plastic mount on the meter in front of the meter infrared receiving LED (aim through the hole)

Then, fasten the optical head to the plastic mount. Use the black screw to tighten the optical head to the mount.



<u>If it is an **electromechanical meter**</u>, make sure the optical head is properly attached to the adhesive plastic mount with the help of the black screw:

Stick the system on the meter glass panel, making sure the two arrows are perfectly aligned with the meter disk (face the meter and keep your eyes at disc level for better result):

If the arrows are not completely lined up with the disc, loosen the screw, adjust position, and tighten the screw.







Connect the white cable between the optical head and the FM432 battery/radio box.

In the case of an electromechanical meter, make sure the optical head is still perfectly aligned with the disk.



The FM432ir starts measuring and tries to join the LoRaWAN network.

The **optical head LEDs** (lights) should blink this way:

- 1. Calibration: red LED blinks for 20 seconds.
- 2. Validation: green LED each time the disk mark (black or red) comes in front of the sensor (electromechanical meter) or each time a correct infrared signal is detected (mME meter).
- 3. The green light stops completely to avoid wasting battery load (after 3 minutes for electromechanical, after 1 minute for mME).

The LEDs on the radio/battery box show the progress of **the join process**:

- Red and Green LED blinking together (join in progress)
- Green LED blinking alone (join successful)
- Red LED blinking alone (join failed)





## 2.3 Installing the FM432g (optical reading of gas meters)



Clean the meter window.

Paste the holder on the glass of the meter, in front of the **prior-to-last digit** of the index, using the provided adhesive (already fixed on the holder).



>> Make sure the arrows of the holder are perfectly at **mid-height of the frame**.

>> In some cases, the digit can be higher or lower than normal. Position the arrows at **mid**height of the frame, not at mid-height of the digit.



X Too high

Clip the optical sensor to the holder.

**Connect the white cable** between the optical head and the FM432 battery/radio box.

The FM432g starts measuring and tries to join the LoRaWAN network.

The optical head red LED (light) should blink for 20 seconds (optical head calibration period)

The LEDs on the radio/battery box show the progress of the join process:

- Red and Green LED blinking together (join in progress)
- Green LED blinking alone (join successful)
- Red LED blinking alone (join failed)





## 2.4 Installing the FM432p (detecting meter pulse outputs: gas, water, elec, heat...)

The FM432p comes with a cable that needs to be connected to the meter pulse interface.

By default, the end of the cable shows two wires: red wire (pulse), black wire (ground).

If the meter output shows a polarity, make sure to connect the cable accordingly.



If the cable is equipped with a "binder" connector, just connect it to the pulse output interface. The "binder" plug is wired so that either 3-5 or 4-6 configuration will work.



"binder" connector

The FM432p starts measuring and tries to join a LoRaWAN network either once it has detected a first pulse or once the batteries have been installed.

The LEDs on the radio/battery box show the progress of the join process:

- Red and Green LED blinking together (join in progress)
- Green LED blinking alone (join successful)
- Red LED blinking alone (join failed)





## 2.5 Installing the FM432t (measuring temperature)

Start the join process by removing the batteries, waiting for 10 seconds, and putting them back on.

#### The LEDs on the radio/battery box show the progress of the join process:

- Red and Green LED blinking together (join in progress)
- Green LED blinking alone (join successful)
- Red LED blinking alone (join failed)

**Position the FM432t** box wherever you want to measure temperature. For measuring in-house temperature, it is recommended to position the FM432t box around 1 meter above the floor and, if possible, not too close to a wall (especially outside walls).

Warning: the FM432t box is not "rain-proof". So, to measure outside temperatures, it is recommended either to position it in a place protected from the rain, or inside a "rain-proof" additional box (a full waterproof box should be avoided because of the risk of water vapor infiltration and condensation).

## 3. Replacing batteries in a sensor

Batteries used in FM432x products are special Lithium 3.6V batteries (Lithium thionyl chloride or Li-SoCl2). You should only replace them by similar batteries, of good quality, form renown manufacturers, and make sure that they are positioned the right way (+ side and – side are indicated both on each battery and at the bottom of the battery compartment).

The usual format of the batteries is A, but AA works also (though the energy is lower).

It is possible to use only one battery instead of two, but the expected lifetime will of course be reduced accordingly.

In case of an ATEX certified product such as the FM432g, when operating in an ATEX zone you should only use certified batteries provided by Fludia, so that the product is still considered certified.

## 4. Join and rejoin

## 4.1 Join strategy

Join request is sent when the sensor is started.

For FM432e, FM432ir and FM432g products, it is the smart optical head that is initiating the join. When the smart optical head is powered up (i.e. at the moment when it is connected to a radio-box or, if it was already connected to the radio-box without battery, at the moment when the batteries are positioned in the radio-box), it sends instruction to the radio-box to send a join request. In case this join request fails, there are two additional attempts, 10 seconds apart.

After that, there will be 3 new attempts every 12 hours.

For the FM432p product, the initial join attempt occurs when the product is powered up (i.e. at the moment when the batteries are positioned in the radio-box). In case this join request fails, there are two additional



attempts, 10 seconds apart. There are no additional retries, as long as the sensor has not detected any pulse. When a pulse is detected, three new join attempts are made. If these attempts fail, then there will be 3 new attempts every 12 hours. The logic here is to be able to put batteries in a product beforehand (so that it can be shipped this way and easy to use right away) without it making join attempts every 12 hours. Only when the product is connected to a pulse meter will it be able to retry join requests.

## 4.2 Rejoin strategy

Rejoin strategy refers to a situation when a product has already joined a network but for some reason the networked has changed and does not recognize the product anymore (or if the sensor needs to be "transferred" from one network to another without having to physically initiate a join sequence on the product).

The rejoin strategy is available for product references FM432e\_ap, FM432g\_ap and FM432p\_ap. The rejoin strategy is optional and must be activated with the help of a specific "REJOIN downlink" containing the activation value (0 or 1) and the number of unconfirmed messages before a rejoin must be initiated.

The rejoin logic is the following one:

- Every 24 hours, the product signals the LoRaWAN network that the next message will be a "CONFIRMED message", meaning that the network should acknowledge its reception.
- As long as the product does not receive this acknowledgement, all the following messages will be "CONFIRMED messages".
- If the product does not receive any acknowledgement after having sent n "CONFIRMED messages" (n being the number of unconfirmed messages specified in the REJOIN downlink), it initiates a new join sequence
- It will then try again every 12 hours until it manages to join.

## 4.3 Make a sensor forget its join

To make a sensor forget its join, you simply must cut the energy source: remove the batteries.

## 5. Remotely changing parameters

For products with the new -ap firmware version, some parameters can be remotely changed with the help of a downlink.

Related product references are: FM432e\_ap, FM432ir\_ap, FM432g\_ap and FM432p\_ap.

Main parameters that can be changed:

- Measurement frequency
- Number of measurement values in each uplink
- Redundancy: if activated, previous measurements are repeated.

Online tool to create the appropriate downlinks: https://www.fludia.com/resources/en-US/downlink



## 6. Decoding FM432e\_ap messages

## 6.1 Types of messages

| Sensor default configuration | 10 minutes                                                                                                                 | 15 minutes                                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Data message (T1)            | Every 80 minutes (8 x 10 minutes).<br>Measurement and uplink<br>frequencies can be remotely<br>configured with a downlink. | Every 2 hours (8 x 15 minutes).<br>Measurement and uplink<br>frequencies can be remotely<br>configured with a downlink. |
| Service message (T2)         | Every 24 hours                                                                                                             | Every 24 hours                                                                                                          |
| Technical message 1 (TT1)    | Every 24 hours                                                                                                             | Every 24 hours                                                                                                          |
| Technical message 2 (TT2)    | Every hour for 1 day                                                                                                       | Every hour for 1 day                                                                                                    |

FM432e generates four kinds of messages:

- T1: contains the consumption data and is generated several times per day with a frequency determined by the sensor default time-step (can be changed with a configuration downlink).
- T2: contains useful information such as the sensor type, the firmware version, a long index. It is generated once per day.
- TT1: contains technical information (for technical feedback purposes) and is generated once per day.
- TT2: contains technical information (for technical feedback purposes) and is generated each hour for one day after startup.

After start time (t\_start), the sequence of messages (for configuration with 15 minutes time-step) is the following one:

- t\_start + 30 seconds: T2
- t\_start + 1 minute: TT1
- t\_start + 5 minutes: 010203
- t\_start + 1 hour + 1 minute + 30 seconds: TT2
- t\_start + 2 hours: T1
- t\_start + 2 hours + 1 minute + 30 seconds: TT2
- t\_start + 3 hours + 1 minute + 30 seconds: TT2
- t\_start + 4 hours: T1
- etc.

•

- t\_start + 24 hours: T1
- t\_start + 24 hours + 30 seconds: T2
- t\_start + 24 hours + 1 minute: TT1
- t\_start + 26 hours: T1
- t\_start + 28 hours: T1

etc.



## 6.2 Data message (T1) structure

#### 6.2.1 Introduction

The T1 data message transmits **1 index value** and **n increments**.

The **index value** is the cumulated number of optical detections since the start of the sensor. One optical detection can be one LED flash (in the case of an electronic electricity meter) or one disk rotation (in the case of an electromechanical electricity meter). In simple cases, 1 detection represents 1Wh. In other cases, a multiplication factor is related to the meter and 1 detection can represent xWh.

An increment is the index difference between a time -step and the next time-step.

T1 data messages are sent:

- every 80 minutes for sensors with the default 10-minutes time-step configuration
- every 2 hours for sensors with the default 15-minutes time-step configuration
- many other configurations with the help of a configuration downlink (or before shipping for special requests). Measurement time-step can be 5 minutes, 10 minutes, 15 minutes, 30 minutes, 60 minutes. Number of measurement values (number of increments) in each message can be any value. Almost any value, because there are restrictions related to max number of Bytes or radio duty-cycles.

There is a redundancy option that can be activated remotely with a downlink. When redundancy is activated, previous increments are repeated. For example, if the time-step is 15 minutes and there are 4 new increments before the message is sent, the previous 4 time-steps will also be sent. This way, no increment is lost, even if a message is lost (only when there are not several successive missing messages).

## 6.2.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

For example, in the case of 8 measurements in each message, each **increment** should be time stamped as follows:  $t_i = t_{received} - ((8 - i)^*Time\_step)$ 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

#### 6.2.3 Byte structure

| Byte          | #1     | #2            | #3 | #4  | #5  | #6 | #7    | #8   | #9    | #10  | #11   | #12  | #13   | #14  | #15   | #16  | #17   | #18  | #19   | #20  | #21   | #22  |
|---------------|--------|---------------|----|-----|-----|----|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|
| Signification | Header | Time-<br>step |    | Inc | lex |    | Incr. | (t0) | Incr. | (t1) | Incr. | (t2) | Incr. | (t3) | Incr. | (t4) | Incr. | (t5) | Incr. | (t6) | Incr. | (t7) |

Header

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #1   | 0x69         | FM432e ap version (adjustable parameters) |



### Time step

| Byte | value (Hexa) | Signification                          |
|------|--------------|----------------------------------------|
| #2   | 0xXX         | Number of minutes for each measurement |

Index

| Byte | value (Hexa) | Signification                             |  |
|------|--------------|-------------------------------------------|--|
| #3   | Byte3        | Index = (hex2dec( <b>Byte3</b> ) * 2^24 ) |  |
| #4   | Byte4        | + (hex2dec( <b>Byte4</b> ) * 2^16 )       |  |
| #5   | Byte4        | + (hex2dec( <b>Byte5</b> ) * 2^8 )        |  |
| #6   | Byte6        | + hex2dec( <b>Byte6</b> )                 |  |

Incr. (ti)

| Byte | value (Hexa) | Signification                                   |
|------|--------------|-------------------------------------------------|
| #7   | Byte7        | Increment(t0) = (hex2dec( <b>Byte7</b> ) * 2^8) |
| #8   | Byte8        | + hex2dec( <b>Byte8</b> )                       |
| #9   | Byte9        | Increment(t1) = (hex2dec( <b>Byte7</b> ) * 2^8) |
| #10  | Byte10       | + hex2dec( <b>Byte8</b> )                       |
|      |              |                                                 |

## 6.2.4 Example

Given the following T1 message: 690F00006F920178017B0181018C01980196019C019F

The decoded values should be:

| Byte             | #1      | #2             | #3 | #4  | #5  | #6 | #7   | #8   | #9   | #10  | #11  | #12    | #13  | #14    | #15  | #16  | #17  | #18    | #19  | #20  | #21  | #22    |
|------------------|---------|----------------|----|-----|-----|----|------|------|------|------|------|--------|------|--------|------|------|------|--------|------|------|------|--------|
| Signification    | Header* | Time -<br>step |    | Inc | lex |    | Incr | (t0) | Incr | (t1) | Incr | . (t2) | Incr | . (t3) | Incr | (t4) | Incr | . (t5) | Incr | (t6) | Incr | : (t7) |
| Hexa value       | 69      | 0F             | 00 | 00  | 6F  | 92 | 01   | 78   | 01   | 7B   | 01   | 81     | 01   | 8C     | 01   | 98   | 01   | 96     | 01   | 9C   | 01   | 9F     |
| Decoded<br>value |         | 15             |    | 28  | 562 |    | 37   | 76   | 37   | 79   | 38   | 35     | 39   | 96     | 4(   | )8   | 40   | 06     | 41   | 12   | 4    | 15     |

## 6.3 Service message (T2) structure

The T2 data message transmits technical information about the sensor (firmware, meter type, low battery indicator) and more info about the measurements (a longer index, the time-step, and a max power value). The T2 data message is sent on sensor start and then every 24 hours.

| Byte    | #1 | #2               | #3 | #4      | #5 | #6 | #7 | #8             | #9   | #10 | #11 | #12 | #13 | #14                 | #15        | #16         |
|---------|----|------------------|----|---------|----|----|----|----------------|------|-----|-----|-----|-----|---------------------|------------|-------------|
| Signif. |    | Number of starts | NA | Synchro |    |    |    | Low<br>battery | Inde | ex  |     |     |     | Number<br>of values | Redundancy | Sensitivity |

#### Header

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #1   | 0x6A         | FM432e ap version (adjustable parameters) |

## Number of starts

| Byte | value (Hexa) | Signification                                                                                                           |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------|
| #2   | 0xXX         | Number of starts (optical head starts again each time a parameter is changed) of the optical head since last powered-up |



## Synchro

| Byte | value (Hexa) | Signification           |  |  |  |
|------|--------------|-------------------------|--|--|--|
| #4   | 0x00         | no synchronization      |  |  |  |
|      | 0x01         | synchronization request |  |  |  |

#### **Optical Head firmware**

| Byte | value (Hexa) | Signification                      |
|------|--------------|------------------------------------|
| #6   | 0xXX         | Exemple: 3C => 60 => firmware v6.0 |

#### Meter type

| Byte | value (Hexa) | Signification                           |
|------|--------------|-----------------------------------------|
| #7   | 0x00         | Electromechanical meter (spinning disk) |
|      | 0x01         | Electronic meter (flashing LED)         |

## Low battery

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #8   | 0x00         | battery OK                                |
|      | 0x01         | battery NOK (Battery voltage < 2.8 Volts) |

## Index

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #9   | Byte9        | Index = (hex2dec( <b>Byte9</b> ) * 2^24 ) |
| #10  | Byte10       | + (hex2dec( <b>Byte10</b> ) * 2^16 )      |
| #11  | Byte11       | + (hex2dec( <b>Byte11</b> ) * 2^8 )       |
| #12  | Byte12       | + hex2dec( <b>Byte12</b> )                |

## Time step

| Byte | value (Hexa) | Signification                          |
|------|--------------|----------------------------------------|
| #13  | 0xXX         | Number of minutes for each measurement |

## Number of values

| Byte | value (Hexa) | Signification                                  |
|------|--------------|------------------------------------------------|
| #14  | 0xXX         | Number of measurement values in each T1 uplink |

## Redundancy

| Byte | value (Hexa) | Signification |  |  |  |  |
|------|--------------|---------------|--|--|--|--|
| #15  | 0x00         | No redundancy |  |  |  |  |
|      | 0x01         | Redundancy    |  |  |  |  |

## Sensitivity

| Byte | value (Hexa) | Signification                 |
|------|--------------|-------------------------------|
| #16  | 0x00         | highest sensitivity           |
|      | 0x01         | high intermediate sensitivity |
|      | 0x02         | low intermediate sensitivity  |
|      | 0x03         | lowest sensitivity            |



## 6.4 Technical message #1 (TT1) structure

Header (hexa): 12

Size: 19 Bytes

## 6.5 Technical message #2 (TT2) structure

Header (hexa): 13

Size: 11 Bytes

## 6.6 Javascript decoder

Decoder for the FM432e\_ap product:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432e\_ap-decoder.js

All decoders:

https://github.com/Fludia-IoT/LoRaWAN-decoders



## 7. Decoding FM432e\_nc\_1mn messages

## 7.1 Types of messages

|                      | Time-step                           |
|----------------------|-------------------------------------|
| Message Type         | 1 minute                            |
| Data message (T1)    | Every 20 minutes<br>(20 x 1 minute) |
| Service message (T2) | Every 24 hours                      |

FM432e\_nc\_1mn generates two kinds of messages:

- T1: contains twenty power values and the last index. It is generated every 20 minutes.
- T2: contains additional information such as the sensor type and the firmware version. It is generated once per day.

## 7.2 Data message (T1) structure

## 7.2.1 Introduction

The T1 data message transmits 1 index value (cumulated energy value) and 20 power values.

A power value is the average power over 1 minute. The average power calculation is based on the elapsed time between two consecutive optical detections and involves interpolation in order to create 1 minute values. One optical detection can be one LED flash (in the case of an electronic electricity meter) or one disk rotation (in the case of an electromechanical electricity meter). In simple cases, 1 detection represents 1Wh (Watthour) and the power values are in W (Watts). In other cases, a multiplication factor x is related to the meter and 1 detection can represent xWh (in this case the power values should be multiplied by this factor once received).

The T1 data message behaves as follows:

- 1. First message is sent 30 minutes after the sensor start-up.
- 2. Subsequent messages are sent periodically every 20 minutes.

Every T1 data message includes data related to a period of 20 minutes.

## 7.2.2 Timestamping

**Index value** should be time stamped as follows:  $t=t_{received} - delay$ Each **power** should be time stamped as follows:  $t_i=t_{received} - delay - (20 - i)$ Where:

- $t_i$  is the timestamp for one element of the data message i  $\epsilon$  {0,19}.
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- delay is a delay of 10 minutes due to the power computation mechanism. It means that the message is sent 10 minutes after the time of the last 1 minute power. For example, if the message contains power values between 9:00am and 9:20am, the message will only be sent at 9:30am. This way, even



if energy is low, there is time to wait for a late optical detection, necessary to compute average power, and attribute their share to the power values before sending the message.

#### 7.2.3 Byte structure

| Byte          | #1      | #2        | #3 | #4 | #5  | #6  | #7  | #8 | #9  | #10     | #11 | <br>#40 | #41 | #42 | #43 | #44 | #45 |
|---------------|---------|-----------|----|----|-----|-----|-----|----|-----|---------|-----|---------|-----|-----|-----|-----|-----|
| Signification | Header* | er* Index |    | P( | t0) | P(1 | t1) | P( | t2) | <br>P(t | 17) | P(t     | 18) | P(t | 19) |     |     |

#### 7.2.4 Header

| * Header value (Hexa) | Signification               |
|-----------------------|-----------------------------|
| 5b                    | FM432e with 1-min time step |

## 7.2.5 Index calculation

The index can be obtained this way:

## Index = (Byte\_2 \* 2^24) + (Byte\_3 \* 2^16) + (Byte\_4 \* 2^8) + Byte\_5

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

#### 7.2.6 Power values calculation

Power values are labelled (t0) to (t19).

The formulas for obtaining power values are:

| Power(t0) = (Byte_6 * 2^8) + Byte_7   |
|---------------------------------------|
| Power(t1) = (Byte_8 * 2^8) + Byte_9   |
| Power(t2) = (Byte_10 * 2^8) + Byte_11 |
|                                       |

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

## 7.2.7 Example

Given the following T1 message:

The decoded values should be:

| Byte          | #1      | #2 | #3   | #4    | #5 | #6          | #7  | #8          | #9  | #10 | #11 | <br>#40 | #41 | #42 | #43 | #44 | #45 |
|---------------|---------|----|------|-------|----|-------------|-----|-------------|-----|-----|-----|---------|-----|-----|-----|-----|-----|
| Signification | Header* |    | Inc  | dex   |    | <b>P</b> (1 | t0) | <b>P</b> (1 | t1) | P(  | t2) | <br>P(t | 17) | P(t | 18) | P(t | 19) |
| Hexa value    | 5b      | 0a | fd   | ff    | 00 | 06          | 8f  | 06          | 8f  | 06  | 49  | 04      | b0  | 04  | 9b  | 04  | ac  |
| Decoded value |         |    | 1844 | 18048 | 3  | 16          | 79  | 16          | 79  | 16  | 609 | 12      | 00  | 11  | 79  | 11  | 96  |



## 7.3 Service message (T2) structure

The T2 data message transmits technical information about the sensor (firmware, meter type, low battery indicator) and more info about the measurements (a longer index, the time-step, and a max power value). The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1             | #2                  | #3                                     | #4          | #5                                            | #6    | #7 | #8 | #9 | #10      | #11 | #12                      |
|---------------|----------------|---------------------|----------------------------------------|-------------|-----------------------------------------------|-------|----|----|----|----------|-----|--------------------------|
| Signification | Header<br>(51) | Number<br>of starts | Time<br>synchronization<br>(see below) | Not<br>used | Optical<br>head<br>information<br>(see below) | Index | (  |    |    | Not used |     | Time step<br>(see below) |

#### Number of starts

| Byte | Signification                                                                                                  |
|------|----------------------------------------------------------------------------------------------------------------|
| #2   | Number of starts since initial configuration (= number of times the sensor is unplugged from the radio module) |

#### Time synchronization information

| Byte | Bit   | Signification                                     |
|------|-------|---------------------------------------------------|
|      | 1 - 7 | Jitter (in seconds) set to zero for 1 minute data |
| #3   | 8     | Synchro querying: not available for 1 minute data |

#### **Optical head information**

| Byte | Bit   | Signification                                                                   |
|------|-------|---------------------------------------------------------------------------------|
|      | 1 - 6 | Firmware version                                                                |
| #5   | 7     | Meter type:<br>0 = electromechanical meter<br>1 = electronic meter              |
|      | 8     | Low battery:<br>0 = battery OK<br>1 = battery NOK (Battery voltage < 2.8 Volts) |

#### Index

| maex           |                                                                            |
|----------------|----------------------------------------------------------------------------|
| Bytes          | Index calculation                                                          |
| #6, #7, #8, #9 | Index = (Byte_#6 * 2^24 ) + (Byte_#7 * 2^16 ) + (Byte_#8 * 2^8 ) + Byte_#9 |

#### **Time-step**

| Byte | Value (hexa) | Signification     |
|------|--------------|-------------------|
| #12  | 02           | 1-minute interval |

## 7.4 Javascript decoder

Decoder for the FM432e\_nc\_1mn product:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432e\_nc\_1mn-decoder.js

#### All decoders:

https://github.com/Fludia-IoT/LoRaWAN-decoders



## 8. Decoding FM432e\_nc\_10mn and FM432e\_nc\_15mn messages

## 8.1 Types of messages

| Sensor version            | 10 minutes                           | 15 minutes                        | 1 hour                        |
|---------------------------|--------------------------------------|-----------------------------------|-------------------------------|
| Data message (T1)         | Every 80 minutes<br>(8 x 10 minutes) | Every 2 hours<br>(8 x 15 minutes) | Every 8 hours<br>(8 x 1 hour) |
| Service message (T2)      | Every 24 hours                       | Every 24 hours                    | Every 24 hours                |
| Technical message 1 (TT1) | Every 24 hours                       | Every 24 hours                    | Every 24 hours                |
| Technical message 2 (TT2) | Every hour for 1 day                 | Every hour for 1 day              | Every hour for 1 day          |

FM432e generates four kinds of messages:

- T1: contains the consumption data and is generated several times per day with a frequency determined by the sensor time-step.
- T2: contains useful information such as the sensor type, the firmware version, a long index. It is generated once per day.
- TT1: contains technical information (for technical feedback purposes) and is generated once per day.
- TT2: contains technical information (for technical feedback purposes) and is generated each hour for one day after startup.

After start time (t\_start), the sequence of messages (for version 15 minutes time-step) is the following one:

- t\_start + 30 seconds: T2
- t\_start + 1 minute: TT1
- t\_start + 5 minutes: 010203
- t\_start + 1 hour + 1 minute + 30 seconds: TT2
- t\_start + 2 hours: T1
- t\_start + 2 hours + 1 minute + 30 seconds: TT2
- t\_start + 3 hours + 1 minute + 30 seconds: TT2
- t\_start + 4 hours: T1
- etc.
- t\_start + 24 hours: T1
- t\_start + 24 hours + 30 seconds: T2
- t\_start + 24 hours + 1 minute: TT1
- t\_start + 26 hours: T1
- t\_start + 28 hours: T1
- etc.



## 8.2 Data message (T1) structure

#### 8.2.1 Introduction

The T1 data message transmits **1 index value** and **8 increments**.

The **index value** is the cumulated number of optical detections since the start of the sensor. One optical detection can be one LED flash (in the case of an electronic electricity meter) or one disk rotation (in the case of an electromechanical electricity meter). In simple cases, 1 detection represents 1Wh. In other cases, a multiplication factor is related to the meter and 1 detection can represent xWh.

An increment is the index difference between a time -step and the next time-step.

T1 data messages are sent:

- every 80 minutes for 10-minutes time-step sensors
- every 2 hours for 15-minutes time-step sensors
- every 8 hours for 1-hour time-step sensors

#### 8.2.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

Each **increment** should be time stamped as follows:  $t_i = t_{received} - ((8 - i) * Time_step)$ 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

#### 8.2.3 Byte structure

| Byte          | #1      | #2 | #3    | #4 | #5   | #6     | #7    | #8   | #9   | #10  | #11             | #12 | #13        | #14 | #15   | #16  | #17        | #18 | #19   | #20  |
|---------------|---------|----|-------|----|------|--------|-------|------|------|------|-----------------|-----|------------|-----|-------|------|------------|-----|-------|------|
| Signification | Header* |    | Index |    | Incr | . (t0) | Incr. | (t1) | Incr | (t2) | (t2) Incr. (t3) |     | Incr. (t4) |     | Incr. | (t5) | Incr. (t6) |     | Incr. | (t7) |

#### 8.2.4 Header

| * Header values (Hexa) | Signification    |
|------------------------|------------------|
| 20                     | 10-min time step |
| 21                     | 15-min time step |
| 22                     | 1-hour time step |

#### 8.2.5 Index calculation

The index can be obtained this way:

## Index = (Byte\_2 \* 2^16) + (Byte\_3 \* 2^8) + Byte\_4

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)



## 8.2.6 Increment calculation

Increment values are labelled (t0) to (t7) and represent successive increments.

The formulas for obtaining increment values are:

| Increment(t0) = (Byte_5 * 2^8) + Byte_6  |
|------------------------------------------|
| Increment(t1) = (Byte_7 * 2^8) + Byte_8  |
| Increment(t2) = (Byte_9 * 2^8) + Byte_10 |
|                                          |

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

## 8.2.7 Example

Given the following T1 message: 21006f920178017b0181018c01980196019c019f

The decoded values should be:

| Byte          | #1      | #2 | #3    | #4 | #5      | #6     | #7   | #8   | #9   | #10  | #11     | #12    | #13  | #14    | #15  | #16  | #17  | #18    | #19        | #20 |
|---------------|---------|----|-------|----|---------|--------|------|------|------|------|---------|--------|------|--------|------|------|------|--------|------------|-----|
| Signification | Header* |    | Index |    | Incr    | . (t0) | Incr | (t1) | Incr | (t2) | Incr    | . (t3) | Incr | . (t4) | Incr | (t5) | Incr | . (t6) | Incr. (t7) |     |
| Hexa value    | 21      | 00 | 6F    | 92 | 01      | 78     | 01   | 7B   | 01   | 81   | 01      | 8C     | 01   | 98     | 01   | 96   | 01   | 9C     | 01         | 9F  |
| Decoded value |         |    | 28562 |    | 376 379 |        | 385  |      | 396  |      | 396 408 |        | 40   | )6     | 4    | 12   | 4    | 15     |            |     |

## 8.3 Service message (T2) structure

The T2 data message transmits technical information about the sensor (firmware, meter type, low battery indicator) and more info about the measurements (a longer index, the time-step, and a max power value). The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1             | #2                       | #3                                     | #4           | #5                                            | #6 #7 #8 |       | #9 | #10 | #11      | #12 |                          |
|---------------|----------------|--------------------------|----------------------------------------|--------------|-----------------------------------------------|----------|-------|----|-----|----------|-----|--------------------------|
| Signification | Header<br>(0E) | Number<br>of<br>startups | Time<br>synchronization<br>(see below) | Param.<br>Id | Optical<br>head<br>information<br>(see below) | Long     | index |    |     | Not used |     | Time step<br>(see below) |

#### Time synchronization information

| Byte | Bit   | Signification                                                        |
|------|-------|----------------------------------------------------------------------|
| "    | 1 - 7 | Jitter (in seconds)                                                  |
| #3   |       | Synchro querying:<br>0 = no synchro querying<br>1 = synchro querying |

#### **Optical head information**

| Byte | Bit   | Signification                                                                   |
|------|-------|---------------------------------------------------------------------------------|
|      | 1 - 6 | Firmware version                                                                |
| #5   | 7     | Meter type:<br>0 = electromechanical meter<br>1 = electronic meter              |
|      | 8     | Low battery:<br>0 = battery OK<br>1 = battery NOK (Battery voltage < 2.8 Volts) |



#### Time step

| Byte | Value | Signification        |
|------|-------|----------------------|
| #12  | 00    | 10-minutes time step |
|      | 03    | 15-minutes time step |
|      | 01    | 1-hour time step     |

#### 8.3.1 Long Index calculation

The index can be obtained this way (make sure to first convert to decimal):

Index = (Byte\_6 \* 2^24) + (Byte\_7 \* 2^16) + (Byte\_8 \* 2^8) + Byte\_9

## 8.3.2 Max power value calculation

The max power in W can be obtained this way (make sure to first convert to decimal):

Pmax = (Byte\_10 \* 2^8) + Byte\_11

## 8.4 Technical message #1 (TT1) structure

Header (hexa): 12

Size: 19 Bytes

## 8.5 Technical message #2 (TT2) structure

Header (hexa): 13 Size: 11 Bytes

## 8.6 Javascript decoder

Decoder for the FM432e\_nc\_10mn and FM432e\_nc\_15mn products:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432e\_nc\_10mn-15mn-decoder.js

All decoders:

https://github.com/Fludia-IoT/LoRaWAN-decoders



## 9. Decoding FM432ir\_ap messages

FM432ir works both with mME electricity meters with SML protocol and with electromechanical electricity meters (physical switch on the optical head to change meter type).

## 9.1 Types of messages

| Sensor default configuration | 15 minutes                                                                                                            |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Data message (T1)            | Every 2 hours (8 x 15 minutes)<br>Measurement and uplink<br>frequencies can be remotely<br>configured with a downlink |
| Service message (T2)         | Every 24 hours                                                                                                        |

FM432ir generates two kinds of messages:

- T1: contains the consumption data and is generated several times per day with a frequency determined by the sensor default time-step (can be changed with a configuration downlink).
- T2: contains useful information such as the sensor type, the firmware version, a long index. It is generated once per day.

After start time (t\_start), the sequence of messages (for configuration with 15 minutes time-step) is the following one:

- t\_start + 30 seconds: T2
- t\_start + 5 minutes: 010203
- t\_start + 2 hours: T1
- t\_start + 4 hours: T1
- etc.
- t\_start + 24 hours: T1
- t\_start + 24 hours + 30 seconds: T2
- t\_start + 26 hours: T1
- t\_start + 28 hours: T1
- etc.

## 9.2 Data message (T1) structure in the case of an infrared meter (mME)

## 9.2.1 Introduction

The T1 data message transmits **1 index value** and **n increments**, but in the case of the special configuration for self-consumption, there are **2 index values** and **2xn increments** (1 index and n increments for positive values, i.e. imported power, and 1 index and n increments for negative values, i.e exported power)

The index value is the cumulated energy since the start of the sensor.

An increment is the index difference between a time -step and the next time-step.



#### T1 data messages are sent:

- every 2 hours for sensors with the default 15-minutes time-step configuration
- many other configurations with the help of a configuration downlink (or before shipping for special requests). Measurement time-step can be 5 minutes, 10 minutes, 15 minutes, 30 minutes, 60 minutes. Number of measurement values (number of increments) in each message can be any value. Almost any value, because there are restrictions related to max number of Bytes or radio duty-cycles.

There is a redundancy option that can be activated remotely with a downlink. When redundancy is activated, previous increments are repeated. For example, if the time-step is 15 minutes and there are 4 new increments before the message is sent, the previous 4 time-steps will also be sent. This way, no increment is lost, even if a message is lost (only when there are not several successive missing messages).

## 9.2.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

For example, in the case of 8 measurements in each message, each **increment** should be time stamped as follows:  $t_i=t_{received} - ((8 - i)*Time\_step)$ 

## Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

## 9.2.3 Byte structure

| Byte    | #1     | #2            | #3 | #4 | #5 |      | #10 | #11 | #12   | #13  | #14   | #15  | <br>  | #24   | #25  | #26   | #27  |
|---------|--------|---------------|----|----|----|------|-----|-----|-------|------|-------|------|-------|-------|------|-------|------|
| Signif. | Header | Time<br>-step | 0  |    | I  | Inde | K   |     | Incr. | (t0) | Incr. | (t1) | <br>• | Incr. | (t6) | Incr. | (t7) |

#### With E-POS and E-NEG values in self-consumption cases:

| Byte    | #1     | #2            | #3 | #4   |        | #11 | #12   | #13  | <br>#26   | #27  | #28  |      | #35 | #36   | #37  | <br>#50   | #52  |
|---------|--------|---------------|----|------|--------|-----|-------|------|-----------|------|------|------|-----|-------|------|-----------|------|
| Signif. | Header | Time<br>-step | 0  | Inde | əx E-F | POS | Incr. | (t0) | <br>Incr. | (t7) | Inde | x E- | NEG | Incr. | (t0) | <br>Incr. | (t7) |

#### Header

| Byte | value (Hexa) | Signification                                                |
|------|--------------|--------------------------------------------------------------|
| #1   | 0x71         | FM432ir ap version (adjustable parameters) / E-SUM           |
|      | 0x72         | FM432ir ap version (adjustable parameters) / E-POS           |
|      | 0x73         | FM432ir ap version (adjustable parameters) / E-NEG           |
|      | 0x74         | FM432ir ap version (adjustable parameters) / E-POS and E-NEG |

Just after starting up, the sensor looks for specific OBIS codes in the following order:

OBIS code 1.8.0 (E-POS): positive active energy (A+)

OBIS code 16.8.0 (E-SUM): sum active energy without reverse blockade (A+ - A-)

OBIS code 2.8.0 (E-NEG): negative active energy (A-)

The first OBIS code recognized defines what will be read.

In self-consumption cases with E-POS and E-NEG both needed, the option must be specifically set with help of a downlink (or pre-configured by Fludia if specified in the order)



## Time step

| Byte | value (Hexa) | Signification                          |
|------|--------------|----------------------------------------|
| #2   | 0xXX         | Number of minutes for each measurement |

## Signed

|   | Byte | value (Hexa) | Signification                               |
|---|------|--------------|---------------------------------------------|
| Γ | #3   | 0x00         | Unsigned (values can only be positive)      |
|   |      | 0x01         | Signed (values can be positive or negative) |

## Index

| Byte | value (Hexa) | Signification (decoding)                                                   |
|------|--------------|----------------------------------------------------------------------------|
| #4   | Byte4        | Index = ((hex2dec( <b>Byte4</b> ) * 2^56 )                                 |
| #5   | Byte5        | + (hex2dec( <b>Byte5</b> ) * 2^48 )<br>+ (hex2dec( <b>Byte6</b> ) * 2^40 ) |
| #6   | Byte6        | + (hex2dec( <b>Byte7</b> ) * 2^32 )                                        |
| #7   | Byte7        | + (hex2dec( <b>Byte8</b> ) * 2^24 )<br>+ (hex2dec( <b>Byte9</b> ) * 2^16 ) |
| #8   | Byte8        | + (hex2dec( <b>Bytes</b> ) 2 10)<br>+ (hex2dec( <b>Byte10</b> ) * 2^8)     |
| #9   | Byte9        | + hex2dec( <b>Byte11</b> )) /10                                            |
| #10  | Byte10       | If signed, decoding is a bit special, see javascript decoding example      |
| #11  | Byte11       |                                                                            |

## Incr. (ti)

| Byte | value (Hexa) | Signification (decoding)                          |
|------|--------------|---------------------------------------------------|
| #12  | Byte12       | Increment(t0) = ((hex2dec( <b>Byte12</b> ) * 2^8) |
| #13  | Byte13       | + hex2dec( <b>Byte13</b> )) /10                   |
| #14  | Byte14       | Increment(t1) = ((hex2dec( <b>Byte14</b> ) * 2^8) |
| #15  | Byte15       | + hex2dec( <b>Byte15</b> )) /10                   |
|      |              |                                                   |

## 9.2.4 Example

Given the following T1 message: 72 0F 00 000000000107900 0A0A 0A0B ... 0E17 0C11

The decoded values should be:

| Byte             | #1     | #3           | #4     | #5 | #6          | #7 | #8  | #9  | #10 | #11 | #12 | #13               | #14   | #15  | #16   | <br>#25   | #26      | #27          | #28 |  |  |  |
|------------------|--------|--------------|--------|----|-------------|----|-----|-----|-----|-----|-----|-------------------|-------|------|-------|-----------|----------|--------------|-----|--|--|--|
| Signif.          | Header | Time<br>step | Signed |    |             |    | Inc | lex |     |     |     | Inc               | r.t0) | Incr | .(t1) | <br>Incr. | (t13)    | ) Incr.(t14) |     |  |  |  |
| Hexa value       | 72     | 0F           | 00     | 00 | 00          | 00 | 00  | 00  | 10  | 79  | 00  | 0A                | 0A    | 0A   | 0B    | 0E        | 17       | 0C           | 11  |  |  |  |
| Decoded<br>value |        | 15           | 00     |    | 107955.2 Wh |    |     |     |     |     |     | 257.0 Wh 257.1 Wh |       |      | 360.  | 7 Wh      | 308.9 Wh |              |     |  |  |  |



## 9.3 Data message (T1) structure in the case of an electromechanical meter

#### 9.3.1 Introduction

The T1 data message transmits **1 index value** and **n increments**.

The index value is the cumulated energy since the start of the sensor.

An increment is the index difference between a time -step and the next time-step.

T1 data messages are sent:

- every 2 hours for sensors with the default 15-minutes time-step configuration
- many other configurations with the help of a configuration downlink (or before shipping for special requests). Measurement time-step can be 5 minutes, 10 minutes, 15 minutes, 30 minutes, 60 minutes. Number of measurement values (number of increments) in each message can be any value. Almost any value, because there are restrictions related to max number of Bytes or radio duty-cycles.

There is a redundancy option that can be activated remotely with a downlink. When redundancy is activated, previous increments are repeated. For example, if the time-step is 15 minutes and there are 4 new increments before the message is sent, the previous 4 time-steps will also be sent. This way, no increment is lost, even if a message is lost (only when there are not several successive missing messages).

## 9.3.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

For example, in the case of 8 measurements in each message, each **increment** should be time stamped as follows:  $t_i=t_{received} - ((8 - i)*Time\_step)$ 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

## 9.3.3 Byte structure

| Byte    | #1     | #2            | #3 | #4  | #5  | #6 | #7   | #8     | #9   | #10    | <br> | #19  | #20    | #21  | #22    |
|---------|--------|---------------|----|-----|-----|----|------|--------|------|--------|------|------|--------|------|--------|
| Signif. | Header | Time<br>-step |    | Inc | lex |    | Incr | . (t0) | Incr | . (t1) |      | Incr | . (t6) | Incr | . (t7) |

#### Header

| Byte | value (Hexa) | Signification                                                  |
|------|--------------|----------------------------------------------------------------|
| #1   | 0x6F         | FM432ir ap version (adjustable parameters) / electromechanical |

Time step

| Byte | value (Hexa) | Signification                          |
|------|--------------|----------------------------------------|
| #2   | 0xXX         | Number of minutes for each measurement |



#### Index

| Byte | value (Hexa) | Signification (decoding)                                                  |
|------|--------------|---------------------------------------------------------------------------|
| #3   | Byte3        | Index = (hex2dec( <b>Byte3</b> ) * 2^24 )                                 |
| #4   | Byte4        | + (hex2dec( <b>Byte4</b> ) * 2^16 )<br>+ (hex2dec( <b>Byte5</b> ) * 2^8 ) |
| #5   | Byte5        | + hex2dec( <b>Byte6</b> )                                                 |
| #6   | Byte6        |                                                                           |

Incr. (ti)

| Byte | value (Hexa) | Signification (decoding)                        |
|------|--------------|-------------------------------------------------|
| #7   | Byte7        | Increment(t0) = (hex2dec( <b>Byte7</b> ) * 2^8) |
| #8   | Byte8        | + hex2dec( <b>Byte8</b> )                       |
| #9   | Byte9        | Increment(t1) = (hex2dec( <b>Byte9</b> ) * 2^8) |
| #10  | Byte10       | + hex2dec( <b>Byte10</b> )                      |
|      |              |                                                 |

#### 9.3.4 Example

Given the following T1 message

6F 0F 005A962B 0035 0B34 0B34 0A1F 00A1 007B 2206 1968

The decoded values should be:

| Byte          | #1      | #2           | #3 | #4  | #5   | #6 | #7   | #8           | #9 | #10        | #11 | #12        | #13 | #14        | #15 | #16        | #17 | #18        | #19 | #20        | #21 | #22        |  |
|---------------|---------|--------------|----|-----|------|----|------|--------------|----|------------|-----|------------|-----|------------|-----|------------|-----|------------|-----|------------|-----|------------|--|
| Signification | Header* | Time<br>step |    | Inc | dex  |    | Incr | ncr. (t0) li |    | Incr. (t1) |     | Incr. (t2) |     | Incr. (t3) |     | Incr. (t4) |     | Incr. (t5) |     | Incr. (t6) |     | Incr. (t7) |  |
| Hexa value    | 6F      | 0F           | 00 | 5A  | 96   | 2B | 00   | 35           | 0B | 34         | 0B  | 34         | 0A  | 1F         | 00  | A1         | 00  | 7B         | 22  | 06         | 19  | 68         |  |
| Decoded value |         | 15           |    | 593 | 6683 | 3  | 5    | 53 2         |    | 2868       |     | 2868       |     | 2591       |     | 161        |     | 123        |     | 8710       |     | 04         |  |

## 9.4 Service message (T2) structure in the case of an infrared meter (mME)

The T2 data message transmits technical information about the sensor (firmware version...) and more info about the measurements (scaler value, reminder of the current index...). The T2 data message is sent on sensor start and then every 24 hours.

| Byte    | #1  | #2   | #3           | #4                  | #5         | #6                 | #7              | #8 | #9 | #10 | #11 | #12             | #13 |      | #20 |
|---------|-----|------|--------------|---------------------|------------|--------------------|-----------------|----|----|-----|-----|-----------------|-----|------|-----|
| Signif. | Hea | ader | Time<br>step | Number<br>of values | Redundancy | Type of<br>measure | Forced<br>Type? |    |    |     |     | Scaler<br>E-NEG |     | nde> | (   |

## Header

| Byte | value (Hexa) | Signification                                                  |
|------|--------------|----------------------------------------------------------------|
| #1   | 0xF03A       | FM432ir ap version (adjustable parameters) T2 in infrared mode |
| #2   |              |                                                                |

### Time step

| Byte | value (Hexa) | Signification                          |
|------|--------------|----------------------------------------|
| #3   | 0xXX         | Number of minutes for each measurement |



## Number of values

| Byte | value (Hexa) | Signification                                  |
|------|--------------|------------------------------------------------|
| #4   | 0xXX         | Number of measurement values in each T1 uplink |

## Redundancy

| Byte | value (Hexa) | Signification |
|------|--------------|---------------|
| #5   | 0x00         | No redundancy |
|      | 0x01         | Redundancy    |

## Type of measure

| Byte | Value | Signification                                |
|------|-------|----------------------------------------------|
|      | 00    | E-POS values (OBIS code 1.8.0)               |
| #6   | 01    | E-SUM values (OBIS code 16.8.0)              |
|      | 02    | E-NEG values (OBIS code 2.8.0)               |
|      | 03    | E-POS and E-NEG (OBIS codes 1.8.0 and 2.8.0) |

## Forced Type?

| Byte | Value | Signification                                                       |
|------|-------|---------------------------------------------------------------------|
| #7   | 00    | Type of measure hasn't been forced via a downlink since starting up |
|      | 01    | Type of measure has been forced via a downlink since starting up    |

## **Firmware version**

| Byte | Value | Signification                                                 |
|------|-------|---------------------------------------------------------------|
| #8   | 0A    | Optical head firmware version 1.0 (0A=>10=>1.0 / 0B=>11=>1.1) |

## Sensor sensitivity

| Byte | Value | Signification                 |
|------|-------|-------------------------------|
| #9   | 00    | highest sensitivity           |
|      | 01    | high intermediate sensitivity |
|      | 02    | low intermediate sensitivity  |
|      | 03    | lowest sensitivity            |

## Scaler E-POS

| Byte | Value (signed hexa)    | Signification                                                                                                                                                                |
|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #10  | FF / 01 / 02 / 03 / 7F | Multiplication factor that has been applied to index and increment values in case the type is E-POS (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 1.8.0 not found) |

## Scaler E-SUM

| Byte | Value (signed hexa)    | Signification                                                                                                                                                                 |
|------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #11  | FF / 01 / 02 / 03 / 7F | Multiplication factor that has been applied to index and increment values in case the type is E-SUM (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 16.8.0 not found) |

## Scaler E-NEG

| Byte | Value (signed hexa) | Signification                                                                                                                                                                |
|------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #12  |                     | Multiplication factor that has been applied to index and increment values in case the type is E-NEG (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 2.8.0 not found) |



### Index

| Byte | value (Hexa) | Signification (decoding)                                                                                                  |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------|
| #13  | Byte13       | Index = ((hex2dec( <b>Byte13</b> ) * 2^56 )                                                                               |
| #14  | Byte14       | + (hex2dec( <b>Byte14</b> ) * 2^48 )<br>+ (hex2dec( <b>Byte15</b> ) * 2^40 )                                              |
| #15  | Byte15       | + (hex2dec( <b>Byte16</b> ) * 2^32 )                                                                                      |
| #16  | Byte16       | + (hex2dec( <b>Byte17</b> ) * 2^24 )<br>+ (hex2dec( <b>Byte18</b> ) * 2^16 )                                              |
| #17  | Byte17       | + (hex2dec( <b>Byte10</b> ) * 2*8)                                                                                        |
| #18  | Byte18       | + hex2dec( <b>Byte20</b> )) /10                                                                                           |
| #19  | Byte19       | <ul> <li>If signed,first bit gives the sign and decoding is a bit special, see<br/>javascript decoding example</li> </ul> |
| #20  | Byte20       |                                                                                                                           |

## 9.5 Service message (T2) structure in the case of an electromechanical meter

The T2 data message transmits technical information about the sensor (firmware, meter type, low battery indicator..). The T2 data message is sent on sensor start and then every 24 hours.

| Byte    | #1 | #2               | #3 | #4      | #5 | #6 | #7            | #8             | #9   | #10 | #11 | #12 | #13 | #14                 | #15        | #16 |
|---------|----|------------------|----|---------|----|----|---------------|----------------|------|-----|-----|-----|-----|---------------------|------------|-----|
| Signif. |    | Number of starts | NA | Synchro |    |    | Meter<br>type | Low<br>battery | Inde | ex  |     |     |     | Number<br>of values | Redundancy | NA  |

#### Header

| Byte | value (Hexa) | Signification                                                  |
|------|--------------|----------------------------------------------------------------|
| #1   | 0x70         | FM432ir ap version (adjustable parameters) / electromechanical |

## Number of starts

| Byte | value (Hexa) | Signification                                                                                                           |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------|
| #2   | 0xXX         | Number of starts (optical head starts again each time a parameter is changed) of the optical head since last powered-up |

#### Synchro

| Byte | value (Hexa) | Signification           |
|------|--------------|-------------------------|
| #4   | 0x00         | no synchronization      |
|      | 0x01         | synchronization request |

## **Optical Head firmware**

| Byte value (Hexa) |      | Signification                      |  |  |  |
|-------------------|------|------------------------------------|--|--|--|
| #6                | 0xXX | Exemple: 15 => 21 => firmware v2.1 |  |  |  |

#### Meter type

| Byte | value (Hexa) | Signification                           |  |  |  |
|------|--------------|-----------------------------------------|--|--|--|
| #7   | 0x00         | Electromechanical meter (spinning disk) |  |  |  |
|      | 0x01         | Infrared meter (mME with SML protocol)  |  |  |  |

## Low battery

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #8   | 0x00         | battery OK                                |
|      | 0x01         | battery NOK (Battery voltage < 2.8 Volts) |



## Index

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #9   | Byte9        | Index = (hex2dec( <b>Byte9</b> ) * 2^24 ) |
| #10  | Byte10       | + (hex2dec( <b>Byte10</b> ) * 2^16 )      |
| #11  | Byte11       | + (hex2dec( <b>Byte11</b> ) * 2^8 )       |
| #12  | Byte12       | + hex2dec( <b>Byte12</b> )                |

## Time step

| Byte value (Hexa) |      | Signification                          |  |  |  |
|-------------------|------|----------------------------------------|--|--|--|
| #13               | 0xXX | Number of minutes for each measurement |  |  |  |

## Number of values

| Byte | value (Hexa) Signification |                                                |  |
|------|----------------------------|------------------------------------------------|--|
| #14  | 0xXX                       | Number of measurement values in each T1 uplink |  |

## Redundancy

| Byte | value (Hexa) | Signification |
|------|--------------|---------------|
| #15  | 0x00         | No redundancy |
|      | 0x01         | Redundancy    |

## 9.6 Javascript decoder

Decoder for the FM432ir\_ap product:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432ir\_ap-decoder.js

All decoders:

https://github.com/Fludia-IoT/LoRaWAN-decoders



## **10. Decoding FM432ir\_nc\_1mn messages**

## 10.1 Types of messages

|                      | Time-step                        |
|----------------------|----------------------------------|
| Message Type         | 1 minute                         |
| Data message (T1)    | Every 15 minutes (15 x 1 minute) |
| Service message (T2) | Every 24 hours                   |

FM432ir\_nc\_1mn generates two kinds of messages:

- T1: contains 15 or 20 successive values (depending on the type of meter) and the last index. It is generated every 15 or 20 minutes. The successive values are average power values in the case of an electromechanical meter. They are index increments in the case of an infrared meter (typically an mME meter).
- T2: contains additional technical information. It is generated once per day.

## 10.2 Data message (T1) structure in the case of an infrared meter (mME)

## 10.2.1 Introduction

The T1 data message transmits 1 index value (cumulated energy value) and 15 increments.

The index value is the cumulated energy since the start of the optical head.

An **increment** is the index difference between a time -step and the next time-step.

T1 data messages are sent every 15 minutes.

## 10.2.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

Each **increment** should be time stamped as follows:  $t_i = t_{received} - ((15 - i)^* Time\_step)$ 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\epsilon$  {0,14}.
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements (here, 1 minute).

## 10.2.3 Byte structure

| Byte          | #1  | #2   | #3            | #4   | #5 | #6    |  | #11 | #12       | #13 | #14       | #15 | #16       | #17 | #18           | <br>#39 | #40       | #41 | #42 |
|---------------|-----|------|---------------|------|----|-------|--|-----|-----------|-----|-----------|-----|-----------|-----|---------------|---------|-----------|-----|-----|
| Signification | Hea | lder | Time-<br>step | Sign |    | Index |  |     | Incr.(t0) |     | Incr.(t1) |     | Incr.(t2) |     | <br>Incr(t13) |         | Incr(t14) |     |     |

## 10.2.4 Header

| Header value (Hexa) | Signification                                                                                      |  |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0xF02E              | mME meter delivering E-SUM values (OBIS code 16.8.0 available)                                     |  |  |  |  |  |  |
| 0xF02F              | mME meter delivering E-POS values (OBIS code 16.8.0 not available, but 1.8.0 available             |  |  |  |  |  |  |
| 0xF030              | mME meter delivering E-NEG values (OBIS codes 16.8.0 and 1.8.0 not available, but 2.8.0 available) |  |  |  |  |  |  |


Just after starting up, the sensor looks for specific OBIS codes in the following order:

- OBIS code 1.8.0 (E-POS): positive active energy (A+)
- OBIS code 16.8.0 (E-SUM): sum active energy without reverse blockade (A+ A-)
- OBIS code 2.8.0 (E-NEG): negative active energy (A-)

### 10.2.5 Time-step

For FM432ir\_nc\_1mn product reference, Time-step is set to 1.

### 10.2.6 Sign

Indicates if the increment values are signed or unsigned.

| Byte | Value | Signification                 |
|------|-------|-------------------------------|
|      | 00    | Increment values are unsigned |
| #4   | 01    | Increment values are signed   |

### 10.2.7 Index calculation

The index in Wh can be obtained this way:

 $Index = ((Byte_4 * 2^{56}) + (Byte_5 * 2^{48}) + (Byte_6 * 2^{40}) + (Byte_7 * 2^{32}) + (Byte_8 * 2^{24}) + (Byte_9 * 2^{16}) + (Byte_10 * 2^{8}) + Byte_{11} / 10$ 

Make sure to first convert from hexadecimal to decimal: **Byte\_i** <= hex2dec(**Byte\_i**)

# 10.2.8 Increment values calculation

Increment values are labelled (t0) to (t19) and represent successive increments.

The formulas for obtaining increment values in Wh are:

| Increment(t0) = ((Byte_12 * 2^8) + Byte_13) / 10 |
|--------------------------------------------------|
| Increment(t1) = ((Byte_14 * 2^8) + Byte_15) / 10 |
| Increment(t2) = ((Byte_16 * 2^8) + Byte_17) / 10 |
|                                                  |

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

Special values 0xFFFB, 0xFFFC, 0xFFFD, 0xFFFE and 0xFFFF are error codes to be communicated to Fludia for support.

# 10.2.9 Example

Given the following T1 message: F02F 01 00 000000000107900 0A0A 0A0B ... 0E17 0C11

The decoded values should be:

| Byte             | #1   | #2   | #3           | #4   | #5 | #6          | #7 | #8 | #9  | #10                | #11  | #12            | #13  | #14        | #15  | #16  | <br>#39 | #40   | #41 | #42 |
|------------------|------|------|--------------|------|----|-------------|----|----|-----|--------------------|------|----------------|------|------------|------|------|---------|-------|-----|-----|
| Signification    | Head | der* | Time<br>step | Sign |    | Index       |    |    | Inc | Incr.t0) Incr.(t1) |      | <br>Incr.(t13) |      | Incr.(t14) |      |      |         |       |     |     |
| Hexa value       | F0:  | 2F   | 01           | 00   | 00 | 00          | 00 | 00 | 00  | 10                 | 79   | 00             | 0A   | 0A         | 0A   | 0B   | 0E      | 17    | 0C  | 11  |
| Decoded<br>value |      |      | 01           | 00   |    | 107955.2 Wh |    |    |     |                    | 257. | 0 Wh           | 257. | 1 Wh       | 360. | 7 Wh | 308.    | .9 Wh |     |     |



# 10.3 Data message (T1) structure in the case of an electromechanical meter

### 10.3.1 Introduction

The T1 data message transmits 1 index value (cumulated energy value) and 20 power values.

A power value is the average power over 1 minute. The average power calculation is based on the elapsed time between two consecutive optical detections and involves interpolation in order to create 1 minute values. One optical detection occurs for each disk rotation, when the black mark (on the spinning disk) passes in front of the sensor. A multiplication factor (ratio or constant of the meter) is generally related to the meter and 1 detection can represent x Wh. In this case, the power values should be multiplied by this factor once received.

The T1 data message behaves as follows:

- 1. First message is sent 30 minutes after the sensor start-up.
- 2. Subsequent messages are sent periodically every 15 minutes.

Every T1 data message includes data related to a period of 15 minutes.

#### 10.3.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

Each **power** should be time stamped as follows:  $t_i = t_{received} - delay - ((20 - i)^*Time_step)$ 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0, 19\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- delay is a delay of 10 minutes due to the power computation mechanism. It means that the message is sent 10 minutes after the time of the last 1 minute power. For example, if the message contains power values between 9:00am and 9:20am, the message will only be sent at 9:30am. This way, even if energy is low, there is time to wait for a late optical detection, necessary to compute average power, and attribute their share to the power values before sending the message.
- *Time\_step* is the time-step, i.e the interval between two measurements (here, 1 minute).

#### 10.3.3 Byte structure

| Byte          | #1     | #2 | #3  | #4  | #5 | #6 | #7  | #8 | #9           | #10 | #11 | <br>#40 | #41 | #42 | #43 | #44 | #45 |
|---------------|--------|----|-----|-----|----|----|-----|----|--------------|-----|-----|---------|-----|-----|-----|-----|-----|
| Signification | Header |    | Inc | lex |    | P( | t0) | P( | t <b>1</b> ) | P(  | t2) | <br>P(t | 17) | P(t | 18) | P(t | 19) |

#### 10.3.4 Header

| Header value (Hexa) | Signification   |
|---------------------|-----------------|
| 5b                  | 1 min time step |

#### 10.3.5 Index calculation

The index can be obtained this way:



# Index = (Byte\_2 \* 2^24) + (Byte\_3 \* 2^16) + (Byte\_4 \* 2^8) + Byte\_5

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

### 10.3.6 Power values calculation

Power values are labelled (t0) to (t19).

The formulas for obtaining power values are:

| Power(t0) = (Byte_6 * 2^8) + Byte_7   |
|---------------------------------------|
| Power(t1) = (Byte_8 * 2^8) + Byte_9   |
| Power(t2) = (Byte_10 * 2^8) + Byte_11 |
|                                       |

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

### 10.3.7 Example

Given the following T1 message:

50 0afdff00 068f 068f 0649 ... 04b0 049b 04ac

The decoded values should be:

| Byte          | #1      | #2 | #3   | #4    | #5 | #6          | #7  | #8          | #9  | #10 | #11 | <br>#40 | #41 | #42 | #43 | #44 | #45 |
|---------------|---------|----|------|-------|----|-------------|-----|-------------|-----|-----|-----|---------|-----|-----|-----|-----|-----|
| Signification | Header* |    | Inc  | lex   |    | <b>P</b> (1 | t0) | <b>P</b> (1 | t1) | P(  | t2) | <br>P(t | 17) | P(t | 18) | P(t | 19) |
| Hexa value    | 50      | 0A | FD   | FF    | 00 | 06          | 8F  | 06          | 8F  | 06  | 49  | 04      | B0  | 04  | 9B  | 04  | AC  |
| Decoded value |         |    | 1844 | 18048 | 3  | 16          | 79  | 16          | 79  | 16  | 609 | 12      | 00  | 11  | 79  | 11  | 96  |

# 10.4 Service message (T2) structure in the case of an infrared meter (mME)

The T2 data message transmits technical information about the sensor (firmware version...) and more info about the measurements (scaler value, reminder of the current index...). The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1         | #2 | #3           | #4              | #5              | #6                  | #7                    | #8              | #9              | #10             | #11 |       | #18 |
|---------------|------------|----|--------------|-----------------|-----------------|---------------------|-----------------------|-----------------|-----------------|-----------------|-----|-------|-----|
| Signification | Hea<br>(F0 |    | Time<br>step | Type of measure | Forced<br>Type? | firmware<br>version | Sensor<br>sensitivity | Scaler<br>E-POS | Scaler<br>E-SUM | Scaler<br>E-NEG |     | Index |     |

### **Time-step**

| Byte | Value | Signification      |
|------|-------|--------------------|
| #3   | 01    | 1-minute time step |

# Type of measure

| Byte | Value | Signification                   |
|------|-------|---------------------------------|
|      | 00    | E-POS values (OBIS code 1.8.0)  |
| #4   | 01    | E-SUM values (OBIS code 16.8.0) |
|      | 02    | E-NEG values (OBIS code 2.8.0)  |



# Forced Type?

| Byte | Value | Signification                                                       |
|------|-------|---------------------------------------------------------------------|
| #5   | 00    | Type of measure hasn't been forced via a downlink since starting up |
|      | 01    | Type of measure has been forced via a downlink since starting up    |

# **Firmware version**

| Byte | Value | Signification                                                 |
|------|-------|---------------------------------------------------------------|
| #6   | 0A    | Optical head firmware version 1.0 (0A=>10=>1.0 / 0B=>11=>1.1) |

# Sensor sensitivity

| Byte                  | Value | Signification                 |  |  |
|-----------------------|-------|-------------------------------|--|--|
|                       | 00    | highest sensitivity           |  |  |
| #7                    | 01    | high intermediate sensitivity |  |  |
|                       | 02    | low intermediate sensitivity  |  |  |
| 03 lowest sensitivity |       | lowest sensitivity            |  |  |

# Scaler E-POS

| Byte | Value (signed hexa)    | Signification                                                                                                                                                                |  |  |  |
|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| #8   | FF / 01 / 02 / 03 / 7F | Multiplication factor that has been applied to index and increment values in case the type is E-POS (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 1.8.0 not found) |  |  |  |

# Scaler E-SUM

| Byte | Value (signed hexa)    | Signification                                                                                                                                                                 |  |  |
|------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| #9   | FF / 01 / 02 / 03 / 7F | Multiplication factor that has been applied to index and increment values in case the type is E-SUM (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 16.8.0 not found) |  |  |

# **Scaler E-NEG**

| Byte | Value (signed hexa) | Signification                                                                                                                                                                |  |  |
|------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| #10  |                     | Multiplication factor that has been applied to index and increment values in case the type is E-NEG (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 2.8.0 not found) |  |  |

# Index

| Bytes   | Index calculation                                                                                       |
|---------|---------------------------------------------------------------------------------------------------------|
| #11 #18 | Index = ((Byte_11 * 2^56) + (Byte_12 * 2^48) + (Byte_13 * 2^40) + (Byte_14 * 2^32) + (Byte_15 * 2^24) + |
|         | (Byte_16 * 2^16) + (Byte_17 * 2^8) + Byte_18) / 10                                                      |

# 10.5 Service message (T2) structure in the case of an electromechanical meter

The T2 data message transmits technical information about the sensor (firmware, low battery indicator) and reminder of key values (index and time-step). The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1             | #2                  | #3                      | #4          | #5                             | #6    | #7 | #8       | #9       | #10      | #11 | #12       |
|---------------|----------------|---------------------|-------------------------|-------------|--------------------------------|-------|----|----------|----------|----------|-----|-----------|
| Signification | Header<br>(4B) | Number<br>of starts | Time<br>synchronization | Not<br>used | Optical<br>head<br>information | Index | (  | <u> </u> | <u> </u> | Not used |     | Time step |



# Number of starts

| Byte | Signification                                                                                                        |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| #2   | Number of starts since initial configuration (= number of times the sensor has been unplugged from the radio module) |  |  |  |

#### Time synchronization information

| Byte | Bit Signification |                                                                      |
|------|-------------------|----------------------------------------------------------------------|
|      | 1 - 7             | Jitter (in seconds)                                                  |
| #3   |                   | Synchro querying:<br>0 = no synchro querying<br>1 = synchro querying |

# **Optical head information**

| Byte | Bit   | Signification                                                                   |
|------|-------|---------------------------------------------------------------------------------|
|      | 1 - 6 | Firmware version                                                                |
| #5   | 7     | Meter type:<br>0 = electromechanical meter                                      |
|      | 8     | Low battery:<br>0 = battery OK<br>1 = battery NOK (Battery voltage < 2.8 Volts) |

#### Index

| Bytes          | Index calculation                                                          |  |  |
|----------------|----------------------------------------------------------------------------|--|--|
| #6, #7, #8, #9 | Index = (Byte_#6 * 2^24 ) + (Byte_#7 * 2^16 ) + (Byte_#8 * 2^8 ) + Byte_#9 |  |  |

### **Time-step**

| Byte | Value (hexa) | Signification      |
|------|--------------|--------------------|
| #12  | 02           | 1 minute time step |

# 10.6 Javascript decoder

Decoder for the FM432ir\_nc\_1mn product:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432ir\_nc\_1mn-decoder.js

#### All decoders:



# 11. Decoding FM432ir\_nc\_15mn messages

# 11.1 Types of messages

|                      | Time-step                         |
|----------------------|-----------------------------------|
| Message Type         | 15 minutes                        |
| Data message (T1)    | Every 2 hours<br>(8 x 15 minutes) |
| Service message (T2) | Every 24 hours                    |

FM432ir\_nc\_15mn generates two kinds of messages:

- T1: contains eight successive values and the last index. It is generated every 2 hours. The successive values are index increments.
- T2: contains additional technical information. It is generated once per day.

# 11.2 Data message (T1) structure in the case of an infrared meter (mME)

# 11.2.1 Introduction

The T1 data message transmits 1 index value (cumulated energy value) and 8 increments.

The index value is the cumulated energy since the start of the optical head.

An increment is the index difference between a time -step and the next time-step.

T1 data messages are sent every 2 hours for 15-minutes time-step sensors.

# 11.2.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

Each **increment** should be time stamped as follows: *t<sub>i</sub>=t<sub>received</sub> - ((8 - i)\*Time\_step)* 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\epsilon$  {0,7}.
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

### 11.2.3 Byte structure

| Byte          | #1  | #2   | #3            | #4   | #5 | #6 |       | #11 | #12 | #13  | #14   | #15  | #16   | #17  | #18   | <br>#25  | #26   | #27  | #28   |
|---------------|-----|------|---------------|------|----|----|-------|-----|-----|------|-------|------|-------|------|-------|----------|-------|------|-------|
| Signification | Hea | ider | Time-<br>step | Sign |    |    | Index |     |     | Incr | .(t0) | Incr | :(t1) | Incr | .(t2) | <br>Incr | .(t6) | Incr | .(t7) |

# 11.2.4 Header

| Header value (Hexa) | Signification                                                                                    |
|---------------------|--------------------------------------------------------------------------------------------------|
| 0xF02E              | mME meter delivering E-SUM values (OBIS code 16.8.0 available)                                   |
| 0xF02F              | mME meter delivering E-POS values (OBIS code 16.8.0 not available, but 1.8.0 available           |
| 0xF030              | mME meter delivering E-NEG values (OBIS code 16.8.0 and 1.8.0 not available, but 2.8.0 available |



Just after starting up, the sensor looks for specific OBIS codes in the following order:

- OBIS code 1.8.0 (E-POS): positive active energy (A+)
- OBIS code 16.8.0 (E-SUM): sum active energy without reverse blockade (A+ A-)
- OBIS code 2.8.0 (E-NEG): negative active energy (A-)

#### 11.2.5 Time-step

For FM432ir\_nc\_15mn product reference, Time-step is set to 0F.

#### 11.2.6 Sign

Indicates if the index and increment values are signed or unsigned.

| Byte | Value | Signification                           |
|------|-------|-----------------------------------------|
|      | 00    | Index and Increment values are unsigned |
| #4   | 01    | Index and Increment values are signed   |

### 11.2.7 Index calculation

The index in Wh can be obtained this way:

 $Index = ((Byte_4 * 2^{56}) + (Byte_5 * 2^{48}) + (Byte_6 * 2^{40}) + (Byte_7 * 2^{32}) + (Byte_8 * 2^{24}) + (Byte_9 * 2^{16}) + (Byte_10 * 2^{8}) + Byte_11) / 10$ 

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

#### 11.2.8 Increment value calculation

Increment values are labelled (t0) to (t7) and represent successive increments.

The formulas for obtaining increment values in Wh are:

| Increment(t0) = ((Byte_12 * 2^8) + Byte_13) / 10 |
|--------------------------------------------------|
| Increment(t1) = ((Byte_14 * 2^8) + Byte_15) / 10 |
| Increment(t2) = ((Byte_16 * 2^8) + Byte_17) / 10 |
|                                                  |

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

Special values 0xFFFB, 0xFFFC, 0xFFFD, 0xFFFE and 0xFFFF are error codes to be communicated to Fludia for support.



# 11.2.9 Example

Given the following T1 message for a 15 minutes time-step sensor:

F02F 0F 00 00000000107900 0A0A 0A0B ... 0E17 0C11

The decoded values should be:

| Byte             | #1   | #2   | #3           | #4   | #5          | #6                    | #7 | #8 | #9 | #10  | #11   | #12       | #13              | #14  | #15  | #16          | <br>#25 | #26 | #27 | #28 |
|------------------|------|------|--------------|------|-------------|-----------------------|----|----|----|------|-------|-----------|------------------|------|------|--------------|---------|-----|-----|-----|
| Signification    | Head | ler* | Time<br>step | Sign |             | Index Incr.t0) Incr.( |    |    |    |      | :(t1) | <br>Incr. | (t13) Incr.(t14) |      |      |              |         |     |     |     |
| Hexa value       | F02  | 2F   | 0F           | 00   | 00          | 00                    | 00 | 00 | 00 | 10   | 79    | 00        | 0A               | 0A   | 0A   | 0B           | 0E      | 17  | 0C  | 11  |
| Decoded<br>value |      |      | 15           | 00   | 107955.2 Wh |                       |    |    |    | 257. | 0 Wh  | 257.1 Wh  |                  | 360. | 7 Wh | 'Wh 308.9 Wh |         |     |     |     |

# 11.3 Data message (T1) structure in the case of an electromechanical meter

### 11.3.1 Introduction

The T1 data message transmits **1 index value** and **8 increments**.

The **index value** is the cumulated number of optical detections since the start of the sensor. One optical detection occurs for each disk rotation, when the black mark (on the spinning disk) passes in front of the sensor. **Important:** a multiplication factor (ratio or constant of the meter) is generally related to the meter and 1 detection can represent xWh.

An increment is the index difference between a time -step and the next time-step.

T1 data messages are sent every 2 hours for 15-minutes time-step sensors.

# 11.3.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

Each **increment** should be time stamped as follows: *t<sub>i</sub>=t<sub>received</sub> - ((8 - i)\*Time\_step)* 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

#### 11.3.3 Byte structure

| Byte          | #1      | #2 | #3  | #4 | #5 | #6    | #7   | #8    | #9   | #10   | #11  | #12   | #13  | #14   | #15    | #16   | #17  | #18   | #19  | #20   | #21  |
|---------------|---------|----|-----|----|----|-------|------|-------|------|-------|------|-------|------|-------|--------|-------|------|-------|------|-------|------|
| Signification | Header* |    | Ind | ex |    | Incr. | (t0) | Incr. | (t1) | Incr. | (t2) | Incr. | (t3) | Incr. | . (t4) | Incr. | (t5) | Incr. | (t6) | Incr. | (t7) |

#### 11.3.4 Header

| * Header values (Hexa) | Signification    |
|------------------------|------------------|
| 49                     | 15-min time step |



# 11.3.5 Index calculation

The index can be obtained this way:

Index = (Byte\_2 \* 2^24) + (Byte\_3 \* 2^16) + (Byte\_4 \* 2^8) + Byte\_5

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

### 11.3.6 Increment calculation

Increment values are labelled (t0) to (t7) and represent successive increments.

The formulas for obtaining increment values are:

| Increment(t0) = (Byte_6* 2^8) + Byte_7    |
|-------------------------------------------|
| Increment(t1) = (Byte_8 * 2^8) + Byte_9   |
| Increment(t2) = (Byte_10 * 2^8) + Byte_11 |
|                                           |

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

# 11.3.7 Example

Given the following T1 message for a 15 minutes time-step sensor:

49 005A962B 0035 0B34 0B34 0A1F 00A1 007B 2206 1968

The decoded values should be:

| Byte          | #1      | #2 | #3   | #4  | #5 | #6    | #7   | #8   | #9     | #10  | #11    | #12  | #13  | #14  | #15    | #16  | #17    | #18  | #19    | #20  | #21    |
|---------------|---------|----|------|-----|----|-------|------|------|--------|------|--------|------|------|------|--------|------|--------|------|--------|------|--------|
| Signification | Header* |    | Inc  | lex |    | Incr. | (t0) | Incr | . (t1) | Incr | . (t2) | Incr | (t3) | Incr | . (t4) | Incr | . (t5) | Incr | . (t6) | Incr | . (t7) |
| Hexa value    | 49      | 00 | 5A   | 96  | 2B | 00    | 35   | 0B   | 34     | 0B   | 34     | 0A   | 1F   | 00   | A1     | 00   | 7B     | 22   | 06     | 19   | 68     |
| Decoded value |         |    | 5936 | 683 |    | 5     | 3    | 28   | 68     | 28   | 68     | 25   | 91   | 16   | 61     | 12   | 23     | 87   | 10     | 65   | 604    |

# 11.4 Service message (T2) structure in the case of an infrared meter (mME)

The T2 data message transmits technical information about the sensor (firmware version...) and more info about the measurements (scaler value, reminder of the current index...). The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1         | #2          | #3           | #4              | #5              | #6                  | #7                    | #8              | #9              | #10             | #11 |       | #18 |
|---------------|------------|-------------|--------------|-----------------|-----------------|---------------------|-----------------------|-----------------|-----------------|-----------------|-----|-------|-----|
| Signification | Hea<br>(F0 | ader<br>2A) | Time<br>step | Type of measure | Forced<br>Type? | firmware<br>version | Sensor<br>sensitivity | Scaler<br>E-POS | Scaler<br>E-SUM | Scaler<br>E-NEG |     | Index |     |

### **Time-step**

| Byte | Value | Signification        |
|------|-------|----------------------|
| #3   | 0F    | 15 minutes time step |

# Type of measure

| Byte | Value | Signification                   |
|------|-------|---------------------------------|
|      | 00    | E-POS values (OBIS code 1.8.0)  |
| #4   | 01    | E-SUM values (OBIS code 16.8.0) |
|      | 02    | E-NEG values (OBIS code 2.8.0)  |



# Forced Type?

| Byte | Value | Signification                                                       |  |  |
|------|-------|---------------------------------------------------------------------|--|--|
| #5   | 00    | Type of measure hasn't been forced via a downlink since starting up |  |  |
|      | 01    | Type of measure has been forced via a downlink since starting up    |  |  |

# **Firmware version**

| Byte | Value | Signification                 |  |
|------|-------|-------------------------------|--|
| #6   | 9     | Optical head firmware version |  |

# Sensor sensitivity

| Byte | Value                  | Signification                 |  |
|------|------------------------|-------------------------------|--|
|      | 00 highest sensitivity |                               |  |
| #7   | 01                     | high intermediate sensitivity |  |
|      | 02                     | low intermediate sensitivity  |  |
|      | 03                     | lowest sensitivity            |  |

### Scaler E-POS

| Byte | Value (signed hexa)    | Signification                                                                                                                                                                |  |
|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| #8   | FF / 01 / 02 / 03 / 7F | Multiplication factor that has been applied to index and increment values in case the type is E-POS (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 1.8.0 not found) |  |

### Scaler E-SUM

| Byte | Value (signed hexa)    | Signification                                                                                                                                                                 |  |
|------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| #9   | FF / 01 / 02 / 03 / 7F | Multiplication factor that has been applied to index and increment values in case the type is E-SUM (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 16.8.0 not found) |  |

# Scaler E-NEG

| Byte | Value (signed hexa)    | Signification                                                                                                                                                                |  |
|------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| #10  | FF / 01 / 02 / 03 / 7F | Multiplication factor that has been applied to index and increment values in case the type is E-NEG (FF: 10^-1; 01: 10^1; 02: 10^2; 03: 10^3; 7F: OBIS code 2.8.0 not found) |  |

# Index

| Bytes   | Index calculation in Wh                                                                                 |  |
|---------|---------------------------------------------------------------------------------------------------------|--|
| #11 #18 | Index = ((Byte_11 * 2^56) + (Byte_12 * 2^48) + (Byte_13 * 2^40) + (Byte_14 * 2^32) + (Byte_15 * 2^24) + |  |
|         | (Byte_16 * 2^16) + (Byte_17 * 2^8) + Byte_18) / 10                                                      |  |

# 11.5 Service message (T2) structure in the case of an electromechanical meter

The T2 data message transmits technical information about the sensor (firmware, low battery indicator) and reminder of key values (index and time-step). The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1 | #2 | #3                      | #4          | #5                             | #6   | #7    | #8 | #9 | #10      | #11 | #12                      |
|---------------|----|----|-------------------------|-------------|--------------------------------|------|-------|----|----|----------|-----|--------------------------|
| Signification |    |    | Time<br>synchronization | Not<br>used | Optical<br>head<br>information | Long | index | L  | L  | Not used | L   | Time step<br>(see below) |



# Number of starts

| Byte | Signification                                                                                                        |  |
|------|----------------------------------------------------------------------------------------------------------------------|--|
| #2   | Number of starts since initial configuration (= number of times the sensor has been unplugged from the radio module) |  |

#### Time synchronization information

| Byte | Bit Signification |                                                                      |
|------|-------------------|----------------------------------------------------------------------|
|      | 1 - 7             | Jitter (in seconds)                                                  |
| #3   | 8                 | Synchro querying:<br>0 = no synchro querying<br>1 = synchro querying |

# **Optical head information**

| Byte | Bit   | Signification                                                                   |
|------|-------|---------------------------------------------------------------------------------|
|      | 1 - 6 | Firmware version                                                                |
| #5   |       | Meter type:<br>0 = electromechanical meter                                      |
|      | 8     | Low battery:<br>0 = battery OK<br>1 = battery NOK (Battery voltage < 2.8 Volts) |

# Index

| Bytes          | ytes Index calculation                                                     |  |
|----------------|----------------------------------------------------------------------------|--|
| #6, #7, #8, #9 | Index = (Byte_#6 * 2^24 ) + (Byte_#7 * 2^16 ) + (Byte_#8 * 2^8 ) + Byte_#9 |  |

### Time step

| Byte | Value | Signification        |
|------|-------|----------------------|
| #12  | 03    | 15 minutes time step |

# 11.6 Javascript decoder

Decoder for the FM432ir\_nc\_15mn product:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432ir\_nc\_15mn-decoder.js

### All decoders:



# **12. Decoding FM432g\_ap messages**

# 12.1 Types of messages

| Sensor default configuration | 10 minutes                                                                                                               | 15 minutes                                                                                                            |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Data message (T1)            | Every 80 minutes (8 x 10 minutes)<br>Measurement and uplink<br>frequencies can be remotely<br>configured with a downlink | Every 2 hours (8 x 15 minutes)<br>Measurement and uplink<br>frequencies can be remotely<br>configured with a downlink |
| Service message (T2)         | Every 24 hours                                                                                                           | Every 24 hours                                                                                                        |
| Technical message 1 (TT1)    | Every 24 hours                                                                                                           | Every 24 hours                                                                                                        |

# FM432g generates three kinds of messages:

- T1: contains the consumption data and is generated several times per day with a frequency determined by the sensor default time-step (can be changed with a configuration downlink).
- T2: contains useful information such as the firmware version. It is generated once per day.
- TT1: contains technical information (for technical feedback purposes) and is generated once per day..

After start time (t\_start), the sequence of messages (for configuration with 15 minutes time-step) is the following one:

- t\_start + 30 seconds: T2
- t\_start + 1 minute: TT1
- t\_start + 5 minutes: 010203
- t\_start + 2 hours: T1
- t\_start + 4 hours: T1
- etc.
- t\_start + 24 hours: T1
- t\_start + 24 hours + 30 seconds: T2
- t\_start + 24 hours + 1 minute: TT1
- t\_start + 26 hours: T1
- t\_start + 28 hours: T1
- etc.

# 12.2 Data message (T1) structure

# 12.2.1 Introduction

The T1 data message transmits 1 index value and n increments.

The **index value** is the cumulated number of optical detections since the start of the sensor. One optical detection occurs when the digit changes in front of the optical sensor. Since the sensor is positioned in front of the second digit from the right, it counts 1 when 10 dm3 are consumed (unless the meter has a different unit than dm3 for the last digit, which is rare). Therefore, the sensor multiplies the number of detections by ten, so that the values are in dm3, which is usually more convenient.



An **increment** is the index difference between a time -step and the next time-step.

T1 data messages are sent:

- every 80 minutes for sensors with the default 10-minutes time-step configuration
- every 2 hours for sensors with the default 15-minutes time-step configuration
- many other configurations with the help of a configuration downlink (or before shipping for special requests). Measurement time-step can be 5 minutes, 10 minutes, 15 minutes, 30 minutes, 60 minutes. Number of measurement values (number of increments) in each message can be any value. Almost any value, because there are restrictions related to max number of Bytes or radio duty-cycles.

There is a redundancy option that can be activated remotely with a downlink. When redundancy is activated, previous increments are repeated. For example, if the time-step is 15 minutes and there are 4 new increments before the message is sent, the previous 4 time-steps will also be sent. This way, no increment is lost, even if a message is lost (only when there are not several successive missing messages).

# 12.2.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

For example, in the case of 8 measurements in each message, each **increment** should be time stamped as follows:  $t_i = t_{received} - ((8 - i)*Time\_step)$ 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

# 12.2.3 Byte structure

| Byte          | #1     | #2            | #3 | #4  | #5  | #6 | #7    | #8   | #9    | #10  | #11   | #12  | #13   | #14  | #15   | #16  | #17   | #18  | #19   | #20  | #21  | #22    |
|---------------|--------|---------------|----|-----|-----|----|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|------|--------|
| Signification | Header | Time-<br>step |    | Inc | dex |    | Incr. | (t0) | Incr. | (t1) | Incr. | (t2) | Incr. | (t3) | Incr. | (t4) | Incr. | (t5) | Incr. | (t6) | Incr | . (t7) |

# <u>Header</u>

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #1   | 0x6D         | FM432g ap version (adjustable parameters) |

# Time step

| Byte | value (Hexa) | Signification                          |
|------|--------------|----------------------------------------|
| #2   | 0xXX         | Number of minutes for each measurement |

#### Index

| Byte | value (Hexa) | Signification                             |  |
|------|--------------|-------------------------------------------|--|
| #3   | Byte3        | Index = (hex2dec( <b>Byte3</b> ) * 2^24 ) |  |
| #4   | Byte4        | + (hex2dec( <b>Byte4</b> ) * 2^16 )       |  |
| #5   | Byte4        | + (hex2dec( <b>Byte5</b> ) * 2^8 )        |  |
| #6   | Byte6        | + hex2dec( <b>Byte6</b> )                 |  |



#### Incr. (ti)

| Byte | value (Hexa) | Signification                                   |
|------|--------------|-------------------------------------------------|
| #7   | Byte7        | Increment(t0) = (hex2dec( <b>Byte7</b> ) * 2^8) |
| #8   | Byte8        | + hex2dec( <b>Byte8</b> )                       |
| #9   | Byte9        | Increment(t1) = (hex2dec( <b>Byte7</b> ) * 2^8) |
| #10  | Byte10       | + hex2dec( <b>Byte8</b> )                       |
|      |              |                                                 |

# 12.2.4 Example

Given the following T1 message: 690F00006F920178017B0181018C01980196019C019F

The decoded values should be:

| Byte             | #1      | #2             | #3 | #4  | #5  | #6 | #7   | #8     | #9   | #10    | #11  | #12    | #13  | #14    | #15  | #16    | #17  | #18    | #19   | #20  | #21  | #22    |
|------------------|---------|----------------|----|-----|-----|----|------|--------|------|--------|------|--------|------|--------|------|--------|------|--------|-------|------|------|--------|
| Signification    | Header* | Time -<br>step |    | Inc | dex |    | Incr | . (t0) | Incr | . (t1) | Incr | . (t2) | Incr | . (t3) | Incr | . (t4) | Incr | . (t5) | Incr. | (t6) | Incr | . (t7) |
| Hexa value       | 6D      | 0F             | 00 | 00  | 6F  | 92 | 01   | 78     | 01   | 7B     | 01   | 81     | 01   | 8C     | 01   | 98     | 01   | 96     | 01    | 9C   | 01   | 9F     |
| Decoded<br>value |         | 15             |    | 28  | 562 |    | 37   | 76     | 37   | 79     | 38   | 35     | 39   | 96     | 4(   | )8     | 4(   | 06     | 41    | 12   | 41   | 15     |

# 12.3 Service message (T2) structure

The T2 data message transmits technical information about the sensor (firmware, meter type, low battery indicator) and more info about the measurements (a longer index, the time-step, and a max power value). The T2 data message is sent on sensor start and then every 24 hours.

| Byte    | #1 | #2                  | #3 | #4      | #5 | #6                       | #7 | #8 | #9   | #10 | #11 | #12 | #13 | #14                 | #15        |
|---------|----|---------------------|----|---------|----|--------------------------|----|----|------|-----|-----|-----|-----|---------------------|------------|
| Signif. |    | Number of<br>starts | NA | Synchro |    | Optical head<br>firmware | NA | NA | Inde | ex  |     |     |     | Number<br>of values | Redundancy |

#### Header

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #1   | 0x6E         | FM432g ap version (adjustable parameters) |

# Number of starts

| Byte | value (Hexa) | Signification                                                                                                           |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------|
| #2   | 0xXX         | Number of starts (optical head starts again each time a parameter is changed) of the optical head since last powered-up |

### Synchro

| Byte | value (Hexa) | Signification           |
|------|--------------|-------------------------|
| #4   | 0x00         | no synchronization      |
|      | 0x01         | synchronization request |

# Optical Head firmware

| Byte | value (Hexa) | Signification                        |
|------|--------------|--------------------------------------|
| #6   | 0xXX         | Exemple: 0x3C => 60 => firmware v6.0 |



# Index

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #9   | Byte9        | Index = (hex2dec( <b>Byte9</b> ) * 2^24 ) |
| #10  | Byte10       | + (hex2dec( <b>Byte10</b> ) * 2^16 )      |
| #11  | Byte11       | + (hex2dec( <b>Byte11</b> ) * 2^8 )       |
| #12  | Byte12       | + hex2dec( <b>Byte12</b> )                |

# Time step

| Byte | value (Hexa) | Signification                          |
|------|--------------|----------------------------------------|
| #13  | 0xXX         | Number of minutes for each measurement |

#### Number of values

| Byte | value (Hexa) | Signification                                  |
|------|--------------|------------------------------------------------|
| #14  | 0xXX         | Number of measurement values in each T1 uplink |

# Redundancy

| Byte | value (Hexa) | Signification |
|------|--------------|---------------|
| #15  | 0x00         | No redundancy |
|      | 0x01         | Redundancy    |

# 12.4 Technical message (TT1) structure

| Byte   | Signification                  |
|--------|--------------------------------|
| #1     | Header (hexa): 2E              |
| #2-#22 | Reserved technical information |

# 12.5 Javascript decoder

Decoder for the FM432g\_ap product:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432g\_ap-decoder.js

All decoders:



# 13. Decoding FM432g\_nc\_10mn and FM432g\_nc\_15mn messages

# 13.1 Types of messages

| Sensor version            | 10 minutes                           | 15 minutes                        | 1 hour                        |
|---------------------------|--------------------------------------|-----------------------------------|-------------------------------|
| Data message (T1)         | Every 80 minutes<br>(8 x 10 minutes) | Every 2 hours<br>(8 x 15 minutes) | Every 8 hours<br>(8 x 1 hour) |
| Service message (T2)      | Every 24 hours                       | Every 24 hours                    | Every 24 hours                |
| Technical message 1 (TT1) | Every 24 hours                       | Every 24 hours                    | Every 24 hours                |

# FM432g generates three kinds of messages:

- T1: contains the consumption data and is generated several times per day with a frequency determined by the sensor time-step.
- T2: contains useful information such as the sensor type, the firmware version, a long index. It is generated once per day.
- TT1: contains technical information (for technical feedback purposes) and is generated once per day.

# 13.2 Data message (T1) structure

### 13.2.1 Introduction

# The T1 data message transmits **1 index value** and **8 increments**.

The **index value** is the cumulated number of optical detections since the start of the sensor. One optical detection occurs when the digit changes in front of the optical sensor. Since the sensor is positioned in front of the second digit from the right, it counts 1 when 10 dm3 are consumed (unless the meter has a different unit than dm3 for the last digit, which is rare). Therefore, the sensor multiplies the number of detections by ten, so that the values are in dm3, which is usually more convenient.

An **increment** is the index difference between a time -step and the next time-step.

T1 data messages are sent:

- every 80 minutes for 10-minutes time-step sensors
- every 2 hours for 15-minutes time-step sensors
- every 8 hours for 1-hour time-step sensors

# 13.2.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

Each **increment** should be time stamped as follows: *t<sub>i</sub>=t<sub>received</sub> - ((8 - i)\*Time\_step)* 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.



### 13.2.3 Byte structure

| Byte          | #1      | #2 | #3    | #4 | #5    | #6     | #7    | #8   | #9   | #10    | #11   | #12  | #13   | #14  | #15   | #16  | #17   | #18  | #19   | #20  |
|---------------|---------|----|-------|----|-------|--------|-------|------|------|--------|-------|------|-------|------|-------|------|-------|------|-------|------|
| Signification | Header* |    | Index |    | Incr. | . (t0) | Incr. | (t1) | Incr | . (t2) | Incr. | (t3) | Incr. | (t4) | Incr. | (t5) | Incr. | (t6) | Incr. | (t7) |

# 13.2.4 Header

| * Header values (Hexa) | Signification    |  |  |  |  |  |  |  |
|------------------------|------------------|--|--|--|--|--|--|--|
| 1D                     | 10-min time step |  |  |  |  |  |  |  |
| 1E                     | 15-min time step |  |  |  |  |  |  |  |
| 1F                     | 1-hour time step |  |  |  |  |  |  |  |

### 13.2.5 Index calculation

The index can be obtained this way:

```
Index = (Byte_2 * 2^16 ) + (Byte_3 * 2^8 ) + Byte_4
```

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

#### 13.2.6 Increment calculation

Increment values are labelled (t0) to (t7) and represent successive increments.

The formulas for obtaining increment values are:

| $Increment(t0) = (Byte_5 * 2^8) + Byte_6$ |
|-------------------------------------------|
| Increment(t1) = (Byte_7 * 2^8) + Byte_8   |
| Increment(t2) = (Byte_9 * 2^8) + Byte_10  |
|                                           |

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

# 13.2.7 Example

Given the following T1 message: 1E006F900170017C0190018601AE019A018601B8

The decoded values should be:

| Byte          | #1                       | #2 | #3    | #4                    | #5 | #6                   | #7 | #8     | #9              | #10 | #11        | #12 | #13        | #14 | #15        | #16 | #17 | #18 | #19 | #20 |
|---------------|--------------------------|----|-------|-----------------------|----|----------------------|----|--------|-----------------|-----|------------|-----|------------|-----|------------|-----|-----|-----|-----|-----|
| Signification | nification Header* Index |    |       | Incr. (t0) Incr. (t1) |    | Incr. (t2) Incr. (t3 |    | . (t3) | (t3) Incr. (t4) |     | Incr. (t5) |     | Incr. (t6) |     | Incr. (t7) |     |     |     |     |     |
| Hexa value    | 1E                       | 00 | 6F    | 90                    | 01 | 70                   | 01 | 7C     | 01              | 90  | 01         | 86  | 01         | AE  | 01         | 9A  | 01  | 86  | 01  | B8  |
| Decoded value |                          |    | 28560 |                       | 37 | 70                   | 38 | 30     | 4(              | 00  | 39         | 90  | 43         | 30  | 4′         | 10  | 39  | 90  | 44  | 40  |

# 13.3 Service message (T2) structure

The T2 data message transmits information about the sensor (optical head firmware, number of starts) and more info about the measurements (a longer index, and a reminder of the time-step). The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1             | #2                  | #3                                     | #4           | #5                                         | #6   | #6 #7 #8 #9 |  | #10 | #11   | #12  |                          |
|---------------|----------------|---------------------|----------------------------------------|--------------|--------------------------------------------|------|-------------|--|-----|-------|------|--------------------------|
| Signification | Header<br>(10) | Number<br>of starts | Time<br>synchronization<br>(see below) | Param.<br>Id | Optical head<br>information<br>(see below) | Long | index       |  | L   | Not u | ised | Time step<br>(see below) |



#### Number of starts

| Byte | Signification                                                                                                  |
|------|----------------------------------------------------------------------------------------------------------------|
| #2   | Number of starts since initial configuration (= number of times the sensor is unplugged from the radio module) |

### Time synchronization information

| Byte | Bit   | Signification                                                                                                              |
|------|-------|----------------------------------------------------------------------------------------------------------------------------|
|      | 1 - 7 | Jitter (in seconds)                                                                                                        |
| #3   |       | Synchro querying (needs specific implementation on the<br>server side):<br>0 = no synchro querying<br>1 = synchro querying |

#### **Optical head information**

| Byte | Bit   | Signification                |
|------|-------|------------------------------|
|      | 1 - 6 | Firmware version             |
| #5   | 7     | Meter type:<br>1 = gas meter |
|      | 8     | not used                     |

#### Long index

| Bytes Index calculation |                                                                         |  |  |  |
|-------------------------|-------------------------------------------------------------------------|--|--|--|
| #6, #7, #8, #9          | Index = (Byte_#6 * 2^24) + (Byte_#7 * 2^16) + (Byte_#8 * 2^8) + Byte_#9 |  |  |  |

#### Time step

| Byte | Value | Signification        |
|------|-------|----------------------|
| #12  | 00    | 10-minutes time-step |
|      | 03    | 15-minutes time-step |
|      | 01    | 1-hour time-step     |

# 13.4 Technical message (TT1) structure

| Byte   | Signification                  |
|--------|--------------------------------|
| #1     | Header (hexa): 2E              |
| #2-#22 | Reserved technical information |

# 13.5 Javascript decoder

Decoder for the FM432g\_nc\_10mn and FM432g\_nc\_15mn products:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432g\_nc\_10mn-15mn-decoder.js

#### All decoders:



# 14. Decoding FM432p\_ap messages (FM432p-a\_ap and FM432p-n\_ap)

# 14.1 Types of messages

| Sensor default configuration | 10 minutes                                                                                                               | 15 minutes                                                                                                            |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Data message (T1)            | Every 80 minutes (8 x 10 minutes)<br>Measurement and uplink<br>frequencies can be remotely<br>configured with a downlink | Every 2 hours (8 x 15 minutes)<br>Measurement and uplink<br>frequencies can be remotely<br>configured with a downlink |
| Service message (T2)         | Every 24 hours                                                                                                           | Every 24 hours                                                                                                        |

FM432p generates two kinds of messages:

- T1: contains the consumption data and is generated several times per day with a frequency determined by the sensor default time-step (can be changed with a configuration downlink).
- T2: contains useful information such as the firmware version. It is generated once per day.

After start time (t\_start), the sequence of messages (for configuration with 15 minutes time-step) is the following one:

- t\_start + 30 seconds: T2
- t\_start + 5 minutes: 010203
- t\_start + 2 hours: T1
- t\_start + 4 hours: T1
- etc.
- t\_start + 24 hours: T1
- t\_start + 24 hours + 30 seconds: T2
- t\_start + 26 hours: T1
- t\_start + 28 hours: T1
- etc.

# 14.2 Data message (T1) structure

# 14.2.1 Introduction

The T1 data message transmits **1 index value** and **n increments**.

The index value is the cumulated number of detected pulses since the start of the sensor.

An **increment** is the index difference between a time -step and the next time-step.

T1 data messages are sent:

- every 80 minutes for sensors with the default 10-minutes time-step configuration
- every 2 hours for sensors with the default 15-minutes time-step configuration
- many other configurations with the help of a configuration downlink (or before shipping for special requests). Measurement time-step can be 5 minutes, 10 minutes, 15 minutes, 30 minutes, 60 minutes.
   Number of measurement values (number of increments) in each message can be any value. Almost



any value, because there are restrictions related to max number of Bytes or radio duty-cycles.

There is a redundancy option that can be activated remotely with a downlink. When redundancy is activated, previous increments are repeated. For example, if the time-step is 15 minutes and there are 4 new increments before the message is sent, the previous 4 time-steps will also be sent. This way, no increment is lost, even if a message is lost (only when there are not several successive missing messages).

# 14.2.2 Timestamping

**Index value** should be time stamped as follows: *t=t<sub>received</sub>* 

For example, in the case of 8 measurements in each message, each **increment** should be time stamped as follows:  $t_i = t_{received} - ((8 - i)*Time\_step)$ 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

### 14.2.3 Byte structure

| Byte          | #1     | #2            | #3 | #4  | #5  | #6 | #7    | #8   | #9    | #10  | #11  | #12  | #13   | #14  | #15   | #16  | #17   | #18    | #19   | #20  | #21   | #22  |
|---------------|--------|---------------|----|-----|-----|----|-------|------|-------|------|------|------|-------|------|-------|------|-------|--------|-------|------|-------|------|
| Signification | Header | Time-<br>step |    | Inc | dex |    | Incr. | (t0) | Incr. | (t1) | Incr | (t2) | Incr. | (t3) | Incr. | (t4) | Incr. | . (t5) | Incr. | (t6) | Incr. | (t7) |

#### Header

| Byte | value (Hexa) | Signification                                |
|------|--------------|----------------------------------------------|
| #1   | 0x6B         | FM432p ap version (adjustable parameters) T1 |

# Time step

| [ | Byte | value (Hexa) | Signification                          |
|---|------|--------------|----------------------------------------|
|   | #2   | 0xXX         | Number of minutes for each measurement |

Index

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #3   | Byte3        | Index = (hex2dec( <b>Byte3</b> ) * 2^24 ) |
| #4   | Byte4        | + (hex2dec( <b>Byte4</b> ) * 2^16 )       |
| #5   | Byte4        | + (hex2dec( <b>Byte5</b> ) * 2^8 )        |
| #6   | Byte6        | + hex2dec( <b>Byte6</b> )                 |

#### Incr. (ti)

| Byte | value (Hexa) | Signification                                   |
|------|--------------|-------------------------------------------------|
| #7   | Byte7        | Increment(t0) = (hex2dec( <b>Byte7</b> ) * 2^8) |
| #8   | Byte8        | + hex2dec( <b>Byte8</b> )                       |
| #9   | Byte9        | Increment(t1) = (hex2dec( <b>Byte7</b> ) * 2^8) |
| #10  | Byte10       | + hex2dec( <b>Byte8</b> )                       |
|      |              |                                                 |



# 14.2.4 Example

Given the following T1 message: 6B 0F 00006F92 0178 017B 0181 018C 0198 0196 019C 019F

The decoded values should be:

| Byte             | #1      | #2             | #3 | #4  | #5  | #6 | #7   | #8     | #9   | #10    | #11  | #12    | #13  | #14    | #15  | #16    | #17   | #18    | #19  | #20    | #21  | #22    |
|------------------|---------|----------------|----|-----|-----|----|------|--------|------|--------|------|--------|------|--------|------|--------|-------|--------|------|--------|------|--------|
| Signification    | Header* | Time -<br>step |    | Inc | dex |    | Incr | . (t0) | Incr | . (t1) | Incr | . (t2) | Incr | . (t3) | Incr | . (t4) | Incr. | . (t5) | Incr | . (t6) | Incr | . (t7) |
| Hexa value       | 6B      | 0F             | 00 | 00  | 6F  | 92 | 01   | 78     | 01   | 7B     | 01   | 81     | 01   | 8C     | 01   | 98     | 01    | 96     | 01   | 9C     | 01   | 9F     |
| Decoded<br>value |         | 15             |    | 28  | 562 |    | 37   | 76     | 379  |        | 385  |        | 396  |        | 408  |        | 406   |        | 412  |        | 415  |        |

# 14.3 Service message (T2) structure

The T2 data message transmits technical information about the sensor (firmware, meter type, low battery indicator) and more info about the measurements (a longer index, the time-step, and a max power value). The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1     | #2   | #3     | #4      | #5 | #6  | #7  | #8 | #9        | #10                        | #11        |
|---------------|--------|------|--------|---------|----|-----|-----|----|-----------|----------------------------|------------|
| Signification | Header | Firm | ware \ | ersion/ |    | Inc | lex |    | Time-step | number of increment values | Redundancy |

### Header

| Byte | value (Hexa) | Signification                                |
|------|--------------|----------------------------------------------|
| #1   | 0x6C         | FM432p ap version (adjustable parameters) T2 |

#### Firmware version

| Bytes      | Value example (to be considered as ASCII) | Signification                                                                                                       |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| #2, #3, #4 | 33, 31, 36                                | 33 is ASCII code for 3, 31 is ASCII code for 1, 36 is ASCII code for 6. So, in this example, version would be 3.1.6 |

#### Index

| Byte | value (Hexa) | Signification                             |
|------|--------------|-------------------------------------------|
| #5   | Byte5        | Index = (hex2dec( <b>Byte5</b> ) * 2^24 ) |
| #6   | Byte6        | + (hex2dec( <b>Byte6</b> ) * 2^16 )       |
| #7   | Byte7        | + (hex2dec( <b>Byte7</b> ) * 2^8 )        |
| #8   | Byte8        | + hex2dec( <b>Byte8</b> )                 |

# Time step

| Byte | value (Hexa) | Signification                          |
|------|--------------|----------------------------------------|
| #9   | 0xXX         | Number of minutes for each measurement |

# Number of increment values

| Byte | value (Hexa) | Signification                                  |
|------|--------------|------------------------------------------------|
| #10  | 0xXX         | Number of measurement values in each T1 uplink |

# Redundancy

| Byte | value (Hexa) | Signification |
|------|--------------|---------------|
| #11  | 0x00         | No redundancy |
|      | 0x01         | Redundancy    |



# 14.4 Javascript decoder

Decoder for the FM432p-a\_ap and FM432p-n\_ap products:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432p\_ap-decoder.js

All decoders:



# 15. Decoding FM432p-(a | n)\_nc\_10mn and FM432p-(a | n)\_nc\_15mn

# 15.1 Types of messages

| Sensor version                                        | 10 minutes     | 15 minutes                        | 1 hour                        |
|-------------------------------------------------------|----------------|-----------------------------------|-------------------------------|
| Data message (T1)Every 80 minutes<br>(8 x 10 minutes) |                | Every 2 hours<br>(8 x 15 minutes) | Every 8 hours<br>(8 x 1 hour) |
| Service message (T2)                                  | Every 24 hours | Every 24 hours                    | Every 24 hours                |

FM432p generates two kinds of messages:

- T1: contains the consumption data and is generated several times per day with a frequency determined by the time-step related to the product reference.
- T2: contains additional information such as the firmware version and a long index. It is generated once per day.

# 15.2 Data message (T1) structure

### 15.2.1 Introduction

The T1 data message transmits **1 index value** and **8 increments**.

The **index value** is the cumulated number of input pulses since the product start-up.

An **increment** is the index difference between a time-step and the next time-step.

T1 data messages are sent:

- every 80 minutes for a 10-minutes time-step product
- every 2 hours for a 15-minutes time-step product
- every 8 hours for a 1-hour time-step product

# 15.2.2 Timestamping

**Index value** should be time stamped as follows:  $t=t_{received}$ 

Each **increment** should be time stamped as follows: *t<sub>i</sub>=t<sub>received</sub> - ((8 - i)\*Time\_step)* 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\in \{0,7\}$ .
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two measurements.

#### 15.2.3 Byte structure

| Byte          | #1      | #2    | #3 | #4   | #5     | #6    | #7   | #8                    | #9 | #10 | #11   | #12  | #13        | #14 | #15        | #16 | #17   | #18  | #19 | #20 |
|---------------|---------|-------|----|------|--------|-------|------|-----------------------|----|-----|-------|------|------------|-----|------------|-----|-------|------|-----|-----|
| Signification | Header* | Index |    | Incr | . (t0) | Incr. | (t1) | Incr. (t2) Incr. (t3) |    |     | Incr. | (t4) | Incr. (t5) |     | Incr. (t6) |     | Incr. | (t7) |     |     |



### 15.2.4 Header

| * Header values (Hexa) | Signification    |
|------------------------|------------------|
| 2B                     | 10-min time step |
| 2C                     | 15-min time step |
| 2D                     | 1-hour time step |

#### 15.2.5 Index calculation

The index can be obtained this way:

Index = (Byte\_2 \* 2^16) + (Byte\_3 \* 2^8) + Byte\_4

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

### 15.2.6 Increment calculation

Increment values are labelled (t0) to (t7) and represent successive increments.

The formulas for obtaining increment values are:

| Increment(t0) = (Byte_5 * 2^8) + Byte_6  |
|------------------------------------------|
| Increment(t1) = (Byte_7 * 2^8) + Byte_8  |
| Increment(t2) = (Byte_9 * 2^8) + Byte_10 |
|                                          |

Make sure to first convert from hexadecimal to decimal: Byte\_i <= hex2dec(Byte\_i)

# 15.2.7 Example

Given the following T1 message:

2C006f920178017b0181018c01980196019c019f

The decoded values should be:

| Byte          | #1      | #2 | #3    | #4 | #5   | #6     | #7   | #8   | #9   | #10    | #11  | #12  | #13  | #14    | #15  | #16    | #17  | #18    | #19  | #20    |
|---------------|---------|----|-------|----|------|--------|------|------|------|--------|------|------|------|--------|------|--------|------|--------|------|--------|
| Signification | Header* |    | Index |    | Incr | . (t0) | Incr | (t1) | Incr | . (t2) | Incr | (t3) | Incr | . (t4) | Incr | . (t5) | Incr | . (t6) | Incr | . (t7) |
| Hexa value    | 2C      | 00 | 6F    | 92 | 01   | 78     | 01   | 7B   | 01   | 81     | 01   | 8C   | 01   | 98     | 01   | 96     | 01   | 9C     | 01   | 9F     |
| Decoded value |         |    | 28562 |    | 37   | 76     | 37   | 79   | 38   | 85     | 39   | 96   | 40   | 08     | 40   | 06     | 4    | 12     | 4    | 15     |

# 15.3 Service message (T2) structure

The T2 data message transmits additional information: firmware version, long index, number of increment values in each T1 message, time-step value. The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1             | #2   | #3      | #4    | #5 | #6   | #7    | #8 | #9                                               | #10       |
|---------------|----------------|------|---------|-------|----|------|-------|----|--------------------------------------------------|-----------|
| Signification | Header<br>(29) | Firm | ware ve | rsion |    | Long | index |    | number of increment values<br>in each T1 message | Time-step |



#### **Firmware version**

| Bytes      | Value example (to be considered as ASCII) | Signification                                                                                                             |
|------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| #2, #3, #4 |                                           | 33 is ASCII code for 3, 31 is ASCII code for 1, 36 is ASCII code for 6. So, in this example the firmware version is 3.1.6 |

# Long index

| Bytes          | Index calculation                                                          |
|----------------|----------------------------------------------------------------------------|
| #5, #6, #7, #8 | Index = (Byte_#5 * 2^24 ) + (Byte_#6 * 2^16 ) + (Byte_#7 * 2^8 ) + Byte_#8 |

# Number of increment values in T1

| By | te | Value (Hexa) | Signification                         |
|----|----|--------------|---------------------------------------|
| #9 |    | 08           | 8 increment values in each T1 message |

# Time step

| Byte | Value (Hexa) | Signification                 |
|------|--------------|-------------------------------|
| #12  | 0A           | 10-minutes time step          |
|      | 0F           | 15-minutes time step          |
|      | 3C           | 1-hour time step (60 minutes) |

# 15.4 Javascript decoder

Decoder for the FM432p-a\_nc\_10mn, FM432p-a\_nc\_15mn, FM432p-n\_nc\_10mn and FM432p-n\_nc\_15mn product references:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432p\_nc\_10mn-15mn-decoder.js

#### All decoders:



# 16. Decoding FM432t\_nc\_1mn

# 16.1 Types of messages

|                      | Time-step                           |
|----------------------|-------------------------------------|
| Message Type         | 1 minute                            |
| Data message (T1)    | Every 20 minutes<br>(20 x 1 minute) |
| Service message (T2) | Every 24 hours                      |

FM432t\_1mn generates two kinds of messages:

- T1: contains twenty successive values. It is generated every 20 minutes. The successive values are temperatures.
- T2: contains additional technical information. It is generated once per day.

All hexadecimal values are unsigned, except Temperature values (they are signed).

# 16.2 Data message (T1) structure

### 16.2.1 Introduction

The T1 data message transmits 20 Temperature values.

T1 data messages are sent every 20 minutes.

# 16.2.2 Timestamping

Each **Temperature** should be time stamped as follows:  $t_i = t_{received} - (20 - i)$ 

Where:

- $t_i$  is the timestamp for one element of the data message i  $\epsilon$  {0,19}.
- *t<sub>received</sub>* is the timestamp when T1 data message is received.

# 16.2.3 Byte structure

| Byte          | #1     | #2        | #3   | #4                | #5 | #6  | #7    | #8       | <br>#37 | #38 | #39    | #40       | #41 | #42 |
|---------------|--------|-----------|------|-------------------|----|-----|-------|----------|---------|-----|--------|-----------|-----|-----|
| Signification | Header | Time-step | Temp | Temp(t0) Temp(t1) |    | Tem | p(t2) | <br>Temp | (t17)   | Tem | p(t18) | Temp(t19) |     |     |

# 16.2.4 Header

| Header value (Hexa) | Signification               |
|---------------------|-----------------------------|
| 57                  | FM432t with 1-min time step |



#### 16.2.5 Time-step

| Time-step (Hexa) | Signification |
|------------------|---------------|
| 01               | 1 minute      |

#### 16.2.6 Temperature values calculation

Temperature values are labelled (t0) to (t19) and represent successive increments.

The formulas for obtaining increment values are:

| Temp(t0) = ((Byte_3 * 2^8) + Byte_4)/100 |
|------------------------------------------|
| Temp(t1) = ((Byte_5 * 2^8) + Byte_6)/100 |
| Temp(t2) = ((Byte_7 * 2^8) + Byte_8)/100 |
|                                          |

Make sure to first convert from hexadecimal (signed) to decimal: Byte\_i <= hex2dec(Byte\_i)

# 16.2.7 Example

Given the following T1 message:

57 01 06f5 0708 0714 ... 0484 046b 044c

The decoded values should be:

| Byte          | #1      | #2        | #3              | #4              | #5      | #6       | #7 | #8        |  | #37       | #38 | #39       | #40 | #41 | #42 |
|---------------|---------|-----------|-----------------|-----------------|---------|----------|----|-----------|--|-----------|-----|-----------|-----|-----|-----|
| Signification | Header* | Time-step | Tem             | mp(t0) Temp(t1) |         | Temp(t2) |    | Temp(t17) |  | Temp(t18) |     | Temp(t19) |     |     |     |
| Hexa value    | 57      | 01        | 06              | F5              | 07      | 08       | 07 | 14        |  | 04        | 84  | 04        | 6B  | 04  | 4C  |
| Decoded value | alue    |           | 17.81°C 18.00°C |                 | 18.12°C |          |    | 11.56°C   |  | 11.31°C   |     | 11.00°C   |     |     |     |

# 16.3 Service message (T2) structure

The T2 data message transmits additional information such as the minimum and maximum Temperature over the last 24 hours. The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1             | #2   | #3 #4   |       | #5        | #6  | #6 #7 |     | #8 #9 |                           | #11 | #12                 |
|---------------|----------------|------|---------|-------|-----------|-----|-------|-----|-------|---------------------------|-----|---------------------|
| Signification | Header<br>(58) | Firm | ware ve | rsion | Time-step | Max | Temp  | Min | Temp  | Max <sup>*</sup><br>varia |     | Average/<br>Instant |

#### Time step

| Byte | Value (Hexa) | Signification       |
|------|--------------|---------------------|
| #9   | 0A           | 10-minute time step |
|      | OF           | 15-minute time step |

#### Max Temp

| Bytes  | Value example (Hexa) | Signification                                                                                                   |
|--------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| #2, #3 | 07BE                 | Maximum Temperature over the last 24 hours. Convert to dec-<br>imal and divide by 100. Example: 07BE => 19.82°C |



# Min Temp

| Bytes  | Value example (Hexa) | Signification                                                                                                   |
|--------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| #4, #5 |                      | Minimum Temperature over the last 24 hours. Convert to deci-<br>mal and divide by 100. Example: FF06 => -2.50°C |

#### Max Temp variation

| Bytes  | Value example (Hexa) | Signification                                                                                                                                                                                       |
|--------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #6, #7 |                      | Maximum Temperature variation between two successive measurements over the last 24 hours. Convert to decimal and divide by 100. Example: FF06 => -5.34°C (temperature drop of 5.34°C in one minute) |

# 16.4 Javascript decoder

Decoder for the FM432t\_nc\_1mn product reference:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432t\_nc\_1mn-decoder.js

All decoders:



# 17. Decoding FM432t\_nc\_10mn and FM432t\_nc\_15mn

# 17.1 Types of messages

| Sensor version       | 10 minutes                           | 15 minutes                        |
|----------------------|--------------------------------------|-----------------------------------|
| Data message (T1)    | Every 80 minutes<br>(8 x 10 minutes) | Every 2 hours<br>(8 x 15 minutes) |
| Service message (T2) | Every 24 hours                       | Every 24 hours                    |

FM432t generates two kinds of messages:

- T1: contains the Temperature data and is generated several times per day with a frequency determined by the time-step related to the product reference.
- T2: contains additional technical information. It is generated once per day.

# 17.2 Data message (T1) structure

### 17.2.1 Introduction

The T1 data message transmits 8 Temperature values.

Each of these Temperature values is an average of several measurements. Individual measurements are performed every minute. If the data time-step is 15 minutes (for example), 15 successive individual measurements are averaged to create one 15 minute Temperature value.

T1 data messages are sent:

- every 80 minutes for a 10-minutes time-step product
- every 2 hours for a 15-minutes time-step product.

# 17.2.2 Timestamping

Each **Temperature** should be time stamped as follows: *t<sub>i</sub>=t<sub>received</sub>* - ((8 - *i*)\**Time\_step*)

Where:

- $t_i$  is the timestamp for one element of the data message i  $\epsilon$  {0,7}.
- *t<sub>received</sub>* is the timestamp when T1 data message is received.
- *Time\_step* is the time-step, i.e the interval between two values.

#### 17.2.3 Byte structure

| Byte          | #1     | #2        | #3 | #4       | #5        | #6       | #7        | #8       | #9 | #10      | #11 | #12      | #13 | #14      | #15        | #16      | #17       | #18      |
|---------------|--------|-----------|----|----------|-----------|----------|-----------|----------|----|----------|-----|----------|-----|----------|------------|----------|-----------|----------|
| Signification | Header | Time-step |    | mp<br>0) | Tei<br>(t | mp<br>1) | Ter<br>(ť | np<br>2) |    | mp<br>3) |     | mp<br>4) |     | mp<br>5) | Tei<br>(ti | mp<br>6) | Ter<br>(t | mp<br>7) |

#### 17.2.4 Header

| Header value (Hexa) | Signification |
|---------------------|---------------|
| 57                  | FM432t        |



### 17.2.5 Time-step

| Time-step (Hexa) | Signification |
|------------------|---------------|
| 0A               | 10 minutes    |
| 0F               | 15 minutes    |

### 17.2.6 Temperature calculation

Temperature values are labelled (t0) to (t7).

The formulas for obtaining Temperature values are:

| Increment(t0) = ((Byte_3 * 2^8) + Byte_4)/100 |  |
|-----------------------------------------------|--|
| Increment(t1) = ((Byte_5 * 2^8) + Byte_6)/100 |  |
| Increment(t2) = ((Byte_7 * 2^8) + Byte_8)/100 |  |
|                                               |  |

Make sure to first convert from hexadecimal (signed) to decimal: Byte\_i <= hex2dec(Byte\_i)

# 17.2.7 Example

Given the following T1 message:

57 01 06f5 0708 0714 ... 0484 046b 044c

The decoded values should be:

| Byte          | #1      | #2        | #3   | #4    | #5   | #6    | #7   | #8    | <br>#13  | #14   | #15 | #16    | #17 | #18    |
|---------------|---------|-----------|------|-------|------|-------|------|-------|----------|-------|-----|--------|-----|--------|
| Signification | Header* | Time-step | Tem  | o(t0) | Tem  | p(t1) | Tem  | p(t2) | <br>Temp | o(t5) | Tem | ıp(t6) | Ten | np(t7) |
| Hexa value    | 57      | 01        | 06   | F5    | 07   | 08    | 07   | 14    | 04       | 84    | 04  | 6B     | 04  | 4C     |
| Decoded value |         |           | 17.8 | 1°C   | 18.0 | 0°C   | 18.1 | 2°C   | 11.5     | 6°C   | 11. | 31°C   | 11. | 00°C   |

# 17.3 Service message (T2) structure

The T2 data message transmits additional information such as the minimum and maximum Temperature over the last 24 hours. The T2 data message is sent on sensor start and then every 24 hours.

| Byte          | #1             | #2   | #3      | #4    | #5        | #6  | #7   | #8  | #9   | #10          | #11           | #12                 |
|---------------|----------------|------|---------|-------|-----------|-----|------|-----|------|--------------|---------------|---------------------|
| Signification | Header<br>(58) | Firm | ware ve | rsion | Time-step | Max | Temp | Min | Temp | Max<br>varia | Temp<br>ation | Average/<br>Instant |

# Time step

| Byte | Value (Hexa) | Signification       |
|------|--------------|---------------------|
| #9   | 0A           | 10-minute time step |
|      | 0F           | 15-minute time step |

# Max Temp

| Bytes  | Value example (Hexa) | Signification                                                                                                   |
|--------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| #2, #3 | 07BE                 | Maximum Temperature over the last 24 hours. Convert to dec-<br>imal and divide by 100. Example: 07BE => 19.82°C |



# Min Temp

| Bytes  | Value example (Hexa) | Signification                                                                                                   |
|--------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| #4, #5 | FF06                 | Minimum Temperature over the last 24 hours. Convert to deci-<br>mal and divide by 100. Example: FF06 => -2.50°C |

# Max Temp variation

| Bytes  | Value example (Hexa) | Signification                                                                                                                                                                                       |
|--------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #6, #7 | FDEA                 | Maximum Temperature variation between two successive measurements over the last 24 hours. Convert to decimal and divide by 100. Example: FF06 => -5.34°C (temperature drop of 5.34°C in one minute) |

# 17.4 Javascript decoder

Decoder for the FM432t\_nc\_10mn and FM432t\_nc\_15mn product references:

https://github.com/Fludia-IoT/LoRaWAN-decoders/blob/master/fm432t\_nc\_10mn-15mn-decoder.js

All decoders:



# **18. Accessing the dashboard to check communication and data**

In case a callback has been set up to forward messages to Fludia data server, it is possible to access the dashboard with a Web browser, by typing the following URL: <u>https://fm400-api.fludia.com/console</u>

The login and password have been provided by email at the moment of purchase.

The dashboard displays the list of sensors and some indicators (Version number, time-step, elapsed time since last connection...).



By clicking on the + sign, you can unstack two graphs, one showing measurement data and the other message counts.

By clicking on the ID (Serial) number, you can access a more detailed page, where you can graphically navigate the measurement data, download corresponding data files and have a look at the raw messages.

The top part of this page shows a graph with the measurement data. By default, the displayed period is two days, but a different period can be selected in the calendar.

It is possible to go back and forward in time, one day at a time, by clicking on the "Previous day" or "Next day" button.

The type of data on display can be chosen and be either curve data (could be called interval data, can refer to electric power or gas volume for example) or index data (cumulative quantity, can refer to cumulated energy or cumulated volume for example).

There are two options for curve data: "fill missing data" or "show missing data". The "fill missing data" option creates values by spreading the energy evenly over the missing points. The "show missing value" does not create new values and the mssing periods appear clearly as blanks on the graph.

Index data is always provided without filling missing values.



| Home Devices                                             | Settings Do    | ownload      | Documentati    | n                                                 |                                                                                                                 |                        |                                                                                 | (\$) ramter |
|----------------------------------------------------------|----------------|--------------|----------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|-------------|
| 00000663 Nom                                             |                |              |                |                                                   | FM232                                                                                                           | electronic V47 1 minut | 3                                                                               |             |
| 8k                                                       |                |              |                |                                                   |                                                                                                                 |                        | 13/05/2022 - 14/05/2022                                                         |             |
|                                                          |                |              |                |                                                   | 1 I I I I I I I I I I I I I I I I I I I                                                                         |                        | Ratio 1                                                                         | 0           |
| 2k                                                       |                |              | 1              | n d millio                                        | in the second |                        | Curve data<br>Fill missing data O Show missing data<br>Index data<br>A Download |             |
| 0 11. mai 01.00 06.00 0<br><> Previous day Received date | 19:00 1<br>SNR | 2:00<br>RSSI | 15:00<br>Valid | 18:00 21:00 14. mai 01:00 06:00                   | 05:00 12:00 15:00 18:00<br>Next day >>                                                                          | 0 21:00 15. mai        | Message count of last 7 days                                                    |             |
| 2022-05-14 18:46:25 GMT+0200                             | SNK<br>8       | -66          | valid          | Paytoad<br>0231e57e785abb940f15dd6adc0e534b0ba9c5 | -h306637h666-40                                                                                                 | 40                     | Message count of last 7 days                                                    |             |
| 2022-05-14 18:01:25 GMT+0200                             | 8              | -68          | -              | 0231632e1c17b5f6cf3e859cd1d413f37d8cd3            |                                                                                                                 |                        |                                                                                 |             |
| 2022-05-14 17:16:25 GMT+0200                             | 8              | -69          | ~              | 02306dd1cf3a75249423ea20eaab74dea7963             | 3e25c79321ae80                                                                                                  | 30                     | • • • • •                                                                       | •           |
| 2022-05-14 16:31:25 GMT+0200                             | 8              | -68          | ~              | 02101069178631e2ded3378ee866d3bec22ebe3           | 5616293f1a8e22c8e                                                                                               |                        |                                                                                 |             |
| 2022-05-14 15:47:25 GMT+0200                             | 9              | -70          | ~              | 122f000b0012ca0007ccde3414ff000                   | 01003e8                                                                                                         | 00<br>58, 20           |                                                                                 |             |
| 2022-05-14 15:46:54 GMT+0200                             | 11             | -71          | ×              | 0e0b0000be0007ccdc00000                           | 2                                                                                                               | 20                     |                                                                                 |             |
| 2022-05-14 15:46:24 GMT+0200                             | 9              | -70          | ×              | 0230567bbe411e37abd46a4f3ddcebc8eb                | ad1a3bac715                                                                                                     | 2                      |                                                                                 |             |
| 2022-05-14 15:01:25 GMT+0200                             | 9              | -66          | ×              | 022efd74c4eb3aaf6db6d748ea55e88e6976              |                                                                                                                 | 10                     |                                                                                 |             |
| 2022-05-14 14:16:25 GMT+0200                             | 9              | -68          | ~              | 0233674f51ea6b9ee2066cb64c24c932102b387d          | 0c588efaad15a15eb5                                                                                              |                        |                                                                                 |             |
| 2022-05-14 13:31:25 GMT+0200                             |                | -67          |                | 022e90e3b22f342b79803c3b28f94a64a7e7a0ba          |                                                                                                                 | 0                      |                                                                                 |             |

By clicking on the "download" button a csv file is being created and downloaded containing the measurement data on display, with the selected option. Once opened in a spreadsheet, measurement data looks like the example below.

| Timestamp (s) | Power without ratio (W) | Power with ratio (W) | Ratio | Туре  | Step (minute) | Date                         |
|---------------|-------------------------|----------------------|-------|-------|---------------|------------------------------|
| 1652468580    | 272                     | 272                  | 1     | FM232 | 1             | 2022-05-13 21:03:00 GMT+0200 |
| 1652468640    | 647                     | 647                  | 1     | FM232 | 1             | 2022-05-13 21:04:00 GMT+0200 |
| 1652468700    | 2079                    | 2079                 | 1     | FM232 | 1             | 2022-05-13 21:05:00 GMT+0200 |
| 1652468760    | 1749                    | 1749                 | 1     | FM232 | 1             | 2022-05-13 21:06:00 GMT+0200 |
| 1652468820    | 1409                    | 1409                 | 1     | FM232 | 1             | 2022-05-13 21:07:00 GMT+0200 |
| 1652468880    | 2580                    | 2580                 | 1     | FM232 | 1             | 2022-05-13 21:08:00 GMT+0200 |

# **19. Retrieving data from the server with the API**

In case a callback has been set up to forward messages to Fludia data server, it is possible to use Fludia API.

The access is done through HTTPS with the following URL:

#### https://fm430-api.fludia.com/v1/API/

Each query to the API needs authentication using the Basic Auth access. The login and password are provided separately by email (they are the same as the ones used to access the dashboard).

Exploring the API before implementation.

If needed as a first step, there are several ways to explore the API:

- a. CURL command line: curl -u "login:password" "https://fm430-api.fludia.com/v1/API/..."
- b. Postman tool
- c. swagger.fludia.com (list of requests and test capability)



# 19.1 Device list request

### GET https://fm430-api.fludia.com/v1/API/FM400

returns the list of devices (Last 8 characters of the device ID), the timestamp of the last received message for each device and some additional attributes.

Result example:

```
ł
  "Nom": "",
  "SerialNumber": "a000596c",
  "Type": "FM430",
  "Type_decodage": "V2",
  "Type capteur": "Electronique",
  "Version firmware": "21",
  "DerniereReceptionOK_TS": "1649066589",
  "Pas": "10 minutes",
  "Actif": "actif"
  "Pile faible": "0",
  "Ratio": "1"
},
ł
  "Nom": "",
  "SerialNumber": "a000596d",
  "Type": "FM430",
  "Type_decodage": "V2",
  "Type_capteur": "Electromécanique",
  "Version firmware": "21",
  "DerniereReceptionOK TS": "1649067662",
  "Pas": "10 minutes",
  "Actif": "actif"
  "Pile_faible": "0",
  "Ratio": "1"
```

# Attributes :

SerialNumber: last 8 characters of the device ID (device ID is found on the device front panel label, not to be confused with SN number... a bit confusing, but it comes from older ways to deal with device identification).

Type: FM430 refers to all LoRa devices (FM232x and FM432x).

Type\_decodage: version of message decoding performed by the server (no use for normal API usage).

Type\_capteur: Electronique (electronic electricity meter), Electromécanique (electromechanical electricity meter), IR (infrared SML german electricity meter), gaz (gas meter), pulse (pulse detection), Température (temperature).

Version\_firmware: firmware version

DerniereReceptionOK\_TS: timestamp of the last received message

Pas: measurement time step (1 minute, 10 minutes, 15 minutes, 1 heure)

Actif: "actif" signifies that the device has sent at least 1 message in the last three days (otherwise, it is "inactive".

Pile faible: low battery indicator. Equals 1 when the battery voltage is under a threshold, 0 otherwise (indicator available only for some of the sensors... if not available, the value is NULL)



Ratio: indicates the value of the constant that might be used to multiply the data (taken into account only in a specific request not presented in this document). This constant can be set through the API (for example to take into account the constant of an electromechanical meter in Wh per disk turn). Default value is 1.

# 19.2 Interval data request

# GET

https://fm430-api.fludia.com/v1/API/pxm/SerialNumber[?limit=n[&tsDeb=x&tsFin=x]&show\_missing=true]

### Input data

| SerialNumber |                                            |
|--------------|--------------------------------------------|
| limit        | Maximum number of messages to be collected |
| &tsDeb=      | First Timestamp                            |
| &tsFin=      | Last Timestamp                             |
| show_missing | Option to process missing data             |

### Returns the list of interval data, with related UTC timestamps.

<u>&tsDeb=</u> et <u>&tsFin=</u> are timestamps (in seconds) to filter data from <u>tsDeb</u> to <u>tsFin</u> (not mandatory).

<u>&limit=n</u> to limit to n last values.

show\_missing chooses the way to process data. It is "false" by default.

| Query « pxm »         | show_missing=false (default)                  | show_missing=true              |
|-----------------------|-----------------------------------------------|--------------------------------|
| Missing radio message | Missing data are filled-up by averaged values | Missing data are not filled-up |

Result example (first value is the TimeStamp, second value is the measurement value, without taking any ratio into account):



Depending on the sensor type (Type\_capteur), the measurement values have different meaning:

- Electronique (optical reading of electronic electricity meter): the value is an average power (in Watt, to be multiplied by a constant if the meter comes with such a constant)
- Electromécanique (optical reading of electromechanical electricity meter): the value is an average



power (in Watt, to be multiplied by a constant if the meter comes with such a constant)

- IR (optical reading of infrared SML german electricity meter): the value is an average power (in Watt)
- gaz (optical reading of gas meter): the value is a volume (in tens of dm3, if the sensor has been correctly positioned on the digit left to the dm3 digit)
- pulse (pulse detection): the value is the number of pulses detected over the time step
- Température (temperature): the value is the average temperature over the time step

# 19.3 Index data

GET https://fm430-api.fludia.com/v1/API/index\_brut/SerialNumber[?limit=n[&tsDeb=x&tsFin=x]]

### Input data

| SerialNumber |                                            |
|--------------|--------------------------------------------|
| limit        | Maximum number of messages to be collected |
| tsDeb        | First Timestamp                            |
| tsFin        | Last Timestamp                             |

### <u>&tsDeb</u> = et <u>&tsFin</u> = for timestamps (in seconds) to filter data from <u>tsDeb</u> to <u>tsFin</u> (not mandatory).

<u>&limit</u>=n to limit to n last values.

Result example (first value is the TimeStamp, second value is the index value):



Depending on the sensor type (Type\_capteur), the index values have different meaning:

- Electronique (optical reading of electronic electricity meter): the value is the cumulative energy since installation (in Watt.hour, to be multiplied by a constant if the meter comes with such a constant)
- Electromécanique (optical reading of electromechanical electricity meter): the value is the cumulative energy since installation (in Watt.hour, to be multiplied by a constant if the meter comes with such a constant)
- IR (optical reading of infrared SML german electricity meter): the value is the cumulative energy provided by the meter (in Watt.hour)
- gaz (optical reading of gas meter): the value is the cumulative volume since installation (in tens of dm3, if the sensor has been correctly positioned on the digit left to the dm3 digit)



- pulse (pulse detection): the value is the cumulative number of pulses since installation
- Température (temperature): the value is the average temperature over the time step

# 19.4 Message list

GET https://fm430-api.fludia.com/v1/API/trames?SerialNumber=SerialNumber[&limit=n&offset=m]

#### Input data

| SerialNumber |                                            |
|--------------|--------------------------------------------|
| limit        | Maximum number of messages to be collected |
| offset       | Number of last messages to avoid           |

<u>&limit</u>=n to limit to n last messages. &offset=m to avoid the last m messages.

returns the last n messages received from the device:

```
{
    "SerialNumber": "000017c5",
    "TsReception": 1649080309,
    "Valide": true,
    "Data":
"5b000615330fe30b120b030b660af7107e142a1600163015e40b870b1f0ec90be2067509df0daa0fca131016
1e",
    "Variables": {},
    "Rssi": -77,
    "Snr": 11
  },
  {
    "SerialNumber": "000017c5",
    "TsReception": 1649079109,
    "Valide": true,
    "Data":
"5b00061037095b04bf06d504bf04a307760a880c6a0c5a0c74074406800f870f7a151d18171a461be6191c14
14",
    "Variables": {},
    "Rssi": -77,
    "Snr": 8
```

# 20. Contact

For further information or advice please contact us:

Fludia

# support@fludia.com

01 83 64 13 94

4 ter rue Honoré d'Estienne d'Orves

92150 Suresnes, France



# **21.** Annex A: product references and what they mean

FM432e: electricity meter optical reading

- Ref: FM432e\_nc\_1mn => no compression, average power measured over 1 minute; message sent every 20 minutes including 20 values
- Ref: FM432e\_nc\_10mn => no compression, index increment measured over 10 minutes; message sent every 80 minutes including 8 values
- Ref: FM432e\_nc\_15mn => no compression, index increment measured over 15 minutes; message sent every 120 minutes including 8 values
- Ref: FM432e\_ap => adjustable parameters = measurement frequency, among other things, can be changed by sending a downlink. Default config: index increment measured over 15 minutes; message sent every 120 minutes including 8 values.

FM432ir: electricity infrared meter optical reading (SML protocol)

- Ref: FM432ir\_nc\_1mn => no compression, index increment measured over 1 minute, message sent every 15 minutes including 15 values.
- Ref: FM432ir\_nc\_15mn => no compression, index increment measured over 15 minutes, message sent every 120 minutes including 8 values
- Ref: FM432ir\_ap => adjustable parameters = measurement frequency, among other things, can be changed by sending a downlink. Default config: index increment measured over 15 minutes; message sent every 120 minutes including 8 values.

FM432g: gas meter optical reading (ATEX)

- Ref: FM432g\_nc\_10mn => no compression, index increments measured over 10 minutes, message sent every 80 minutes including 8 values.
- Ref: FM432g\_nc\_15mn => no compression, index increments measured over 15 minutes, message sent every 120 minutes including 8 values.
- Ref: FM432g\_ap => adjustable parameters = measurement frequency, among other things, can be changed by sending a downlink. Default config: index increment measured over 15 minutes; message sent every 120 minutes including 8 values.

FM432p-a: pulse reading (ATEX)

- Ref: FM432p-a\_nc\_1mn => no compression, index increment measured over 1 minute, message sent every 20 minutes including 20 values.
- Ref: FM432p-a\_nc\_10mn => no compression, index increment measured over 10 minutes, message sent every 80 minutes including 8 values.
- Ref: FM432p-a\_nc\_15mn => no compression, index increment measured over 15 minutes, message sent every 120 minutes including 8 values.
- Ref: FM432p-a\_ap => adjustable parameters = measurement frequency, among other things, can be changed by sending a downlink. Default config: index increment measured over 15 minutes; message sent every 120 minutes including 8 values.

FM432p-n: pulse reading (non-ATEX)

- Ref: FM432p-n\_nc\_1mn => no compression, index increment measured over 1 minute, message sent every 20 minutes including 20 values.
- Ref: FM432p-n\_nc\_10mn => no compression, index increment measured over 10 minutes, message sent every 80 minutes including 8 values.
- Ref: FM432p-n\_nc\_15mn => no compression, index increment measured over 15 minutes, message sent every 120 minutes including 8 values.
- Ref: FM432p-n\_ap => adjustable parameters = measurement frequency, among other things, can be changed by sending a downlink. Default config: index increment measured over 15 minutes; message sent every 120 minutes including 8 values.



FM432t: temperature measurement

- Ref: FM432t\_1mn => average temperature measured over 1 minute; message sent every 20 minutes including 20 values
- Ref: FM432t\_10mn => average temperature measured over 10 minutes; message sent every 80 minutes including 8 values
- Ref: FM432t\_15mn => average temperature measured over 15 minutes; message sent every 120 minutes including 8 values