

LoRaWAN ANALOG

Transceiver Analog/Digital Interface

Guide utilisateur / User Guide Version 2.0.0

Ce Guide utilisateur s'applique à partir des versions logicielles suivantes : This User Guide applies from the following firmware versions:

Version RTU: V01.04.00 Version APP: V01.03.04

Préambule / Preamble / Präambel / Preambolo / Preámbulo

- Ce guide décrit les fonctionnalités du produit adeunis®. Il explique les modes de fonctionnement du produit et la manière de le configurer.
- This guide describes the functionalities of the product adeunis®. It explains its functionnments and how to configure it.
- Dieser Leitfaden beschreibt die Funktionalität des Produktes adeunis®. Er erklärt die Betriebsfunktionen des Produktes und die Art und Weise, um es zu konfigurieren.
- Questa guida descrive la funzionalità del prodotto adeunis®. Questo spiega come funziona il prodotto e come configurarlo.
- Esta guía describe las funcionalidades del producto adeunis®. En él se explica los modos de funcionamiento del producto y cómo configurarlo.
- Aucun extrait de ce document ne pourra être reproduit ou transmis (sous format électronique ou papier, ou par photocopie) sans l'accord d'adeunis®. Ce document pourra être modifié sans préavis. Toutes les marques citées dans ce quide font l'objet d'un droit de propriété intellectuelle.
- No part of this document may be reproduced or transmitted (in electronic or paper, or photocopying) without the agreement adeunis®. This document may be changed without notice. All trademarks mentioned in this guide are the subject of intellectual property rights. adeunis®.
- Kein Teil dieses Dokuments darf reproduziert oder übertragen werden (in elektronischer oder Papierform oder Fotokopie) ohne die Zustimmung adeunis®. Dieses Dokument darf ohne vorherige Ankündigung geändert werden. Alle Marken in diesem Handbuch erwähnt werden, sind Gegenstand des geistigen Eigentums.
- Nessuna parte di questo documento può essere riprodotta o trasmessa (in fotocopie elettronico o cartaceo, o), senza il consenso adeunis®. Questo documento può essere modificato senza preavviso. Tutti i marchi citati in questa guida sono oggetto di diritti di proprietà intellettuale.
- Ninguna parte de este documento puede ser reproducida o transmitida (en fotocopias electrónico o en papel,
 o) sin el acuerdo adeunis®. Este documento puede ser modificada sin previo aviso. Todas las marcas comerciales mencionadas en esta guía son el tema de los derechos de propiedad intelectual.

Adeunis 283, rue Louis Néel 38920 Crolles France

Web www.adeunis.com

TABLE DES MATIERES

FRANCAIS 5

INIEOBM	ATIONS PRODUITS ET REGLEMENTAIRES	6
	PRESENTATION DU PRODUIT	11
	Description générale	11
	Encombrement	12
	Carte électronique	12
	Spécifications Techniques	13
1.4.1	Caractéristiques générales	13
1.4.2	Autonomie	13
1.4.3	Caractéristiques des interfaces physiques	13
1.4.4	Compatibilité capteurs	15
	FONCTIONNEMENT DU PRODUIT	16
	Modes de fonctionnement	16
	Mode PARC	16
	Mode COMMANDE	16
	Modes EXPLOITATION	16
	Mode REPLI	17
	Fonctionnement applicatif	17
	Transmission périodique	17
	Transmission periodique Transmission sur dépassement de seuil	18
	Transmission sur événement suite déclanchement entrée TOR	
		20
	Transmission d'une trame de vie journalière	21
	Mode TEST	22
	Fonctionnement des LEDs	22
3.	CONFIGURATION DU PRODUIT	23
	Connecter le produit à un ordinateur	23
	Mode commande	24
	Commande AT	25
	Description des registres	26
3.4.1	Registres fonction	26
3.4.2	Registres réseau	28
4.	DESCRIPTION DES TRAMES	32
4.1.	Trames montantes (uplink)	32
	Octets fixes	32
	Trames d'information sur la configuration du produit	33
	Trame d'information sur la configuration du réseau	34
	Trame de vie (keep alive)	35
	Trame de réponse à une demande de valeur de registre(s)	35
	Trame de données	35
	Synthèse des conditions d'envoi des trames montantes	36
4.2.	Trames descendantes (downlink)	36
	Trame de demande de la configuration du produit	36
		37
	Trame de demande de la configuration du réseau	
	Trame de demande de valeur de registres spécifiques	37
	Trame de mise à jour de la valeur de registres spécifiques	37
	PREPARATION ET CONFIGURATION	39
	Démontage du boîtier	39
	Installation du joint presse étoupe	39
	Montage des capteurs sur les borniers à vis	39
	Câblage des capteurs analogique	40
	Câblage des entrées déclenchement TOR	40
5.6.	Fermeture du boîtier	41
5.7.	Démarrage du produit via aimant	42
5.8.	Changement de la pile	42
6.	INSTALLATION ET UTILISATION	42
6.1.	Positionnement correct des émetteurs	43
6.2.	Types de fixations	43
	Fixation sur tube ou mât	43
	Fixation par vis	44
	Fixation Rail-DIN	45
	HISTORIOUE DU DOCUMENT	45

ENGLIS	SH 46	
PRODU	CTS AND REGULATORY INFORMATION	47
1.	PRODUCT PRESENTATION	52
1.1.	General description	52
1.2.	Dimensions	53
1.3.	Electronic board	53
	Technical Specifications	54
1.4.	1 General characteristics	54
	2 Autonomy	54
	3 Physical interface characteristics	54
	4 Sensor compatibility	56
2.	PRODUCT OPERATION	57
2.1.	Global Operation	57
	1 PARK mode 2 COMMAND mode	57 57
	3 OPERATING mode	57
	4 REPLI mode	58
2.2.	Application operation	58
	1 Periodic transmission	58
	2 Transmission on exceeding of the threshold	59
	3 Transmission on event of digital input	6
2.2.4	4 Transmission of a daily Keep Alive frame	62
2.2.5	5 TEST Mode	63
2.3.	Operation of the LEDs	63
3.	DEVICE CONFIGURATION	64
3.1.	Connecting the device to a computer	64
3.2.	Command mode	64
3.3.	AT commands	65
3.4.	Description of the registers	66 67
	1 Function registers	69
4.	2 Network registers DESCRIPTION OF THE FRAMES	72
4.1.	Uplink frames	72
	1 Fixed bytes	72
	2 Product configuration information frames	72
	3 Network configuration information frame	74
	4 Keep Alive frame	74
	5 Reply frame to a register value request in a downlink frame	75
	6 Data Frame	75
	7 Summary of the conditions of the transmission of the uplink frames	76
4.2.	Downlink frames	76
	1 Product configuration request frame	76
	2 Network configuration request frame	76
	3 Specific register value request frame 4 Frame for updating the value of specific registers	76 77
5.	PREPARATION AND CONFIGURATIONS	78
5.1.	Disassembling the casing	78
5.2.	Fitting the packing gland seal	78
5.3.	Mounting the sensor on the screw terminals	78
5.4.	Wiring of analog sensors	78
5.5.	Wiring of the digital triggering inputs	78
5.6.	Closing the casing	78
5.7.	Starting up the product using a magnet	78
5.8.	Replacing the battery	79
6.	INSTALLATION AND USE	80
6.1.	Correct positioning of the product	80
6.2.	Types of fastenings	80
	1 Tube or mast fastenings)8
	2 Fixing with screws 3 DIN-Rail fixing	88
7.	DOCUMENT HISTORY	86

DEUTSCH 87

86

FRANCAIS

INFORMATIONS PRODUITS ET REGLEMENTAIRES

Information document	Information document		
Titre	LoRaWAN ANALOG - Guide utilisateur		
Sous-titre			
Type de document	Guide utilisateur		
Version	2.0.0		

Ce document s'applique aux produits suivants :

Nom	Référence	Version firmware
LoRaWAN ANALOG 868 - Replaceable battery	ARF8190BA	Version RTU : V01.04.00 Version APP : V01.03.04

AVERTISSEMENT

Ce document et l'utilisation de toute information qu'il contient, est soumis à l'acceptation des termes et conditions adeunis®.

adeunis® ne donne aucune garantie sur l'exactitude ou l'exhaustivité du contenu de ce document et se réserve le droit d'apporter des modifications aux spécifications et descriptions de produit à tout moment sans préavis.

adeunis® se réserve tous les droits sur ce document et les informations qu'il contient. La reproduction, l'utilisation ou la divulgation à des tiers sans autorisation expresse est strictement interdite. Copyright © 2016, adeunis®.

adeunis® est une marque déposée dans les pays de l'UE et autres.

SUPPORT TECHNIQUE

Site web

Notre site Web contient de nombreuses informations utiles : informations sur les produits et accessoires, guides d'utilisation, logiciel de configuration et de documents techniques qui peuvent être accessibles 24h/24.

Contact

Si vous avez des problèmes techniques ou ne pouvez pas trouver les informations requises dans les documents fournis, contactez notre support technique via notre site Web, rubrique « Support Technique ». Cela permet de s'assurer que votre demande soit traitée le plus rapidement possible.

Informations utiles lorsque vous contactez notre support technique

Lorsque vous contactez le support technique merci de vous munir des informations suivantes :

- Type de produit
- Version du firmware (par exemple V1.0.0)
- Description claire de votre question ou de votre problème
- Vos coordonnées complètes

ΕF

Déclaration UE de Conformité

Nous

adeunis 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis.com

Déclarons que la DoC est délivrée sous notre seule responsabilité et fait partie du produit suivant :

Modèle produit : ANALOG LoRaWAN
Références : ARF8190AA, ARF8190BA

L'objet de la déclaration décrit ci-dessus est conforme à la législation d'harmonisation de l'Union applicable :

Directive 2014/53/UE (RED)

Les normes harmonisées et les spécifications techniques suivantes ont été appliquées :

Titre:	Date du standard/spécification
EN 300 220-2 V3.1.1	2017/02
EN 301 489-1 V2.1.1	2016/11
EN 301 489-3 V2.1.0	2016/09
EN 62368-1	2014
EN 62311	2008

5 octobre 2017

Monnet Emmanuel, Responsable Certification

INTRODUCTION

Tous les droits de ce manuel sont la propriété exclusive de adeunis®. Tous droits réservés. La copie de ce manuel (sans l'autorisation écrite du propriétaire) par impression, copie, enregistrement ou par tout autre moyen, la traduction de ce manuel (complète ou partielle) pour toute autre langue, y compris tous les langages de programmation, en utilisant n'importe quel dispositif électrique, mécanique, magnétique, optique, manuel ou autres méthodes, est interdite.

adeunis® se réserve le droit de modifier les spécifications techniques ou des fonctions de ses produits, ou de cesser la fabrication de l'un de ses produits, ou d'interrompre le support technique de l'un de ses produits, sans aucune notification écrite et demande expresse de ses clients, et de s'assurer que les informations à leur disposition sont valables.

Les logiciels de configurations et programmes adeunis® sont disponibles gratuitement dans une version non modifiable. adeunis® ne peut accorder aucune garantie, y compris des garanties sur l'adéquation et l'applicabilité à un certain type d'applications. Dans aucun cas le fabricant, ou le distributeur d'un programme adeunis®, ne peut être tenu pour responsable pour tous les dommages éventuels causés par l'utilisation dû dit programme. Les noms des programmes ainsi que tous les droits d'auteur relatifs aux programmes sont la propriété exclusive de adeunis®. Tout transfert, octroi de licences à un tiers, crédit-bail, location, transport, copie, édition, traduction, modification dans un autre langage de programmation ou d'ingénierie inversée (retro-ingénierie) est interdit sans l'autorisation écrite et le consentement de adeunis®.

Adeunis

283, rue Louis Néel 38920 Crolles France

FR

RECOMMANDATIONS ENVIRONNEMENTALES

Tous les matériaux d'emballage superflus ont été supprimés. Nous avons fait notre possible afin que l'emballage soit facilement séparable en trois types de matériaux : carton (boîte), polystyrène expansible (matériel tampon) et polyéthylène (sachets, feuille de protection en mousse). Votre appareil est composé de matériaux pouvant être recyclés et réutilisés s'il est démonté par une firme spécialisée. Veuillez observer les règlements locaux sur la manière de vous débarrasser des anciens matériaux d'emballage, des piles usagées et de votre ancien appareil.

AVERTISSEMENTS

Valables pour les produits cités dans la déclaration de conformité.

Lire les instructions dans le manuel.

La sécurité procurée par ce produit n'est assurée que pour un usage conforme à sa destination. La maintenance ne peut être effectuée que par du personnel qualifié.

Attention, ne pas installer l'équipement près d'une source de chaleur ou près d'une source d'humidité.

Attention, lorsque l'équipement est ouvert, ne pas réaliser d'opérations autres que celles prévues dans cette notice.

Attention : ne pas ouvrir le produit, risque de choc électrique.

Attention : pour votre sécurité, il est impératif qu'avant toute intervention technique sur l'équipement celui-ci soit mis hors tension.

Attention : pour votre sécurité, le circuit d'alimentation du produit doit être de type TBTS (très basse tension de sécurité) et doit être des sources à puissance limitée.

Attention: lorsque l'antenne est installée à l'extérieur, il est impératif de connecter l'écran du câble à la terre du bâtiment. Il est recommandé d'utiliser une protection contre la foudre. Le kit de protection choisi doit permettre une mise à la terre du câble coaxial (ex: parafoudre coaxial avec mise à la terre du câble à différents endroits au niveau de l'antenne en bas du pylône et à l'entrée, ou juste avant de pénétrer dans le local).

Il faut que le produit soit muni d'un dispositif de sectionnement pour pouvoir couper l'alimentation. Celui-ci doit être proche de l'équipement.

Tout branchement électrique du produit doit être muni d'un dispositif de protection contre les surcharges et les courts-circuits.

RECOMMANDATIONS D'USAGE

- Avant d'utiliser le système, vérifiez si la tension d'alimentation figurant dans son manuel d'utilisation correspond à votre source. Dans la négative, consultez votre fournisseur.
- Placez l'appareil contre une surface plane, ferme et stable.
 - L'appareil doit être installé à un emplacement suffisamment ventilé pour écarter tout risque d'échauffement interne et il ne doit pas être couvert avec des objets tels que journaux, nappes, rideaux, etc.
- L'antenne de l'appareil doit être dégagée et distante de toute matière conductrice de plus de 10 cm.
- L'appareil ne doit jamais être exposé à des sources de chaleur, telles que des appareils de chauffage.
- Ne pas placer l'appareil à proximité d'objets enflammés telles que des bougies allumées, chalumeaux, etc.
- L'appareil ne doit pas être exposé à des agents chimiques agressifs ou solvants susceptibles d'altérer la matière plastique ou de corroder les éléments métalliques.

Élimination des déchets par les utilisateurs dans les ménages privés au sein de l'Union Européenne

Ce symbole sur le produit ou sur son emballage indique que ce produit ne doit pas être jeté avec vos autres ordures ménagères. Au lieu de cela, il est de votre responsabilité de vous débarrasser de vos déchets en les apportant à un point de collecte désigné pour le recyclage des appareils électriques et électroniques. La collecte et le recyclage séparés de vos déchets au moment de l'élimination contribueront à conserver les ressources naturelles et à garantir un recyclage respectueux de l'environnement et de la santé humaine. Pour plus d'informations sur le centre de recyclage le plus proche de votre domicile, contactez la mairie la plus proche, le service d'élimination des ordures ménagères ou le magasin où vous avez acheté le produit.

Ce symbole sur le produit ou sur son emballage indique l'utilisation d'un tension continue (DC)

Attention : Il y a un risque d'explosion si les batteries sont remplacées par une référence non correcte. Jeter les batteries suivant les instructions d'usages. Lors du changement des batteries, le produit doit être proprement et correctement remonté.

IMPORTANT pour la Suisse : l'annexe 4.10 du standard SR 814.013 doit être appliquée pour les batteries

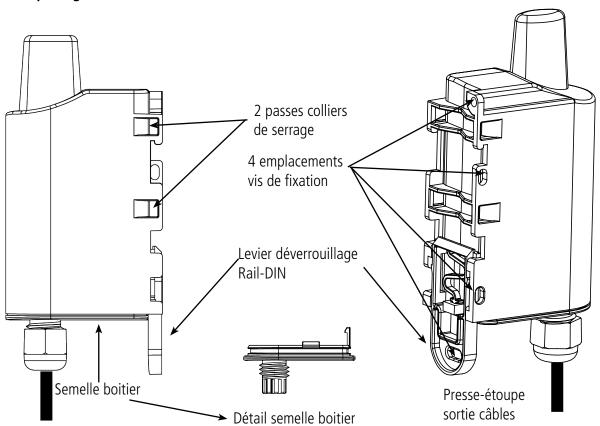
Page 10 of 89

1. PRESENTATION DU PRODUIT

NOTE IMPORTANTE : le démarrage du LoRaWAN ANALOG ne peut se faire que grâce à un aimant.

Description:

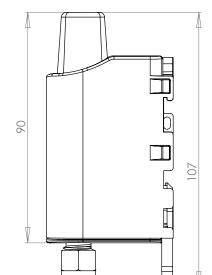
- Le LoRaWAN ANALOG d'ADEUNIS est un émetteur radio prêt à l'emploi permettant de transformer tout type de capteur 0-10V ou 4-20mA en un capteur communicant sans-fil.
- Ce produit répond aux besoins des utilisateurs désireux de superviser à distance les données de toute nature (température, pression, niveau, humidité, CO², vitesse, luminosité, ouverture...)
- L'utilisation du protocole LoRaWAN permet d'intégrer le LoRaWAN ANALOG a tout réseau déjà déployé.
- Deux capteurs peuvent être pris en charge par un seul émetteur LoRaWAN ANALOG.
- Le produit émet les données des capteurs soit périodiquement soit de façon évènementielle sur dépassement de seuils haut ou bas ou sur détection d'un changement d'état sur ses entrées TOR.
- La configuration de l'émetteur est accessible par l'utilisateur via un port micro-USB, permettant notamment le choix des modes de transmission, de la périodicité ou encore du type d'interface (0-10V, 4-20mA).
- Le LoRaWAN ANALOG est alimenté par une pile interne remplaçable.

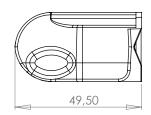

NOTE IMPORTANTE 1 : le LoRaWAN ANALOG est livré par défaut avec une configuration OTAA, permettant à l'utilisateur de déclarer son produit auprès d'un opérateur LoRaWAN. Dans le cas d'une procédure ABP, merci de contacter notre service commercial avec les informations nécessaires.

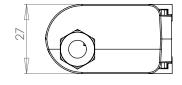
NOTE IMPORTANTE 2: Le LoRaWAN ANALOG permet de transmettre les mesures des capteurs mais ne les alimente pas (sauf version TOR).

Composition du package

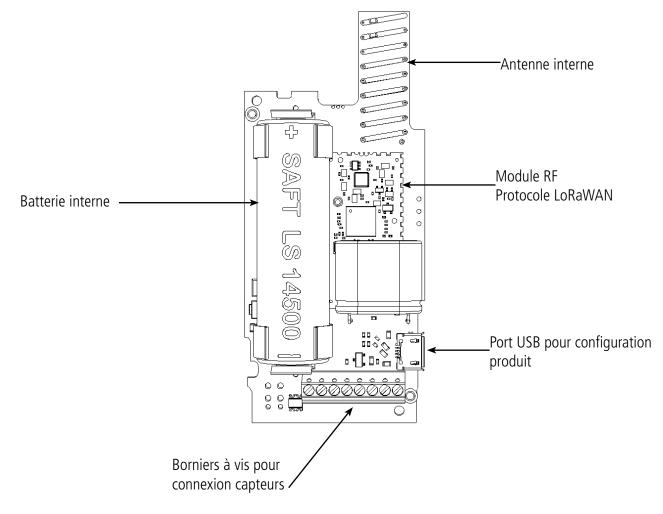
Le produit est livré dans un package carton contenant les éléments suivants : Boîtier supérieur, carte électronique, semelle boîtier Ecrou presse-étoupe, 3 joints de presse-étoupe, 2 vis CBLZ 2.2 x 19mm, 2 chevilles SX4 Fischer


1.1. Description générale





1.2. Encombrement


Valeurs en millimètres

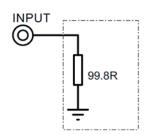
1.3. Carte électronique

1.4. Spécifications Techniques

1.4.1 Caractéristiques générales

Paramètres	Valeur
Tension d'alimentation	3.6V nominal
Alimentation	Version pile amovible : SAFT LS14500
Courant maximum	90mA
Température de fonctionnement	-25°C / +70°C
Dimensions	105 x 50 x 27mm
Poids	70g
Boîtier	IP 67
Normes radio	EN 300-220, EN 301-489, EN 60950

1.4.2 Autonomie


Condition d'utilisation	Périodicité d'envoi	Autonomie SF7	Autonomie SF12
Stockage produit avant	140 trames/jour	7.5 ans	9 mois
utilisation : 1 an maxi-	100 trames/jour	8.8 ans	1 an
mum. Calculs effectués à une	50 trames/jour	11.3 ans	2 ans
température de 20°C	20 trames/jour	13.6 ans	4 ans
	10 trames/jour	14.6 ans	6.5 ans
	2 trames/jour	15.5 ans	12.3 ans

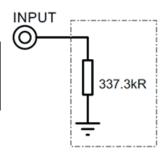
Les valeurs ci-dessus sont des estimations faites dans certaines conditions d'utilisation et d'environnement. Elles ne représentent en aucun cas un engagement de la part d'adeunis®.

1.4.3 Caractéristiques des interfaces physiques

1.4.3.01 Interfaces 4-20mA

Le schéma de principe des interfaces 4-20mA est le suivant :

Valeurs absolues maximum		Unité
Courant d'entrée minimum	0	mA
Courant d'entrée maximum	30	mA


Caractéristiques électriques		Unité
Courant d'entrée minimum	4	mA
Courant d'entrée maximum	20	mA
Impédance équivalente d'entrée	99,8 (+/-0,1%)	Ω

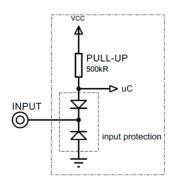
Résolution de l'entrée analogique 12 bits

FR

1.4.3.02 Interfaces 0-10V

Le schéma de principe des interfaces 0-10V est le suivant :

Valeurs absolues maximum		Unité
Tension d'entrée minimum	0	V
Tension d'entrée maximum	15	V


Caractéristiques électriques		Unité
Tension d'entrée minimum	0	V
Tension d'entrée maximum	10	V
Impédance équivalente d'entrée	337,3 (+/-0,2%)	kΩ

Résolution de l'entrée analogique 12 bits

Les valeurs supérieures aux valeurs maximales absolues endommageront le produit.

1.4.3.03 Interfaces digitales

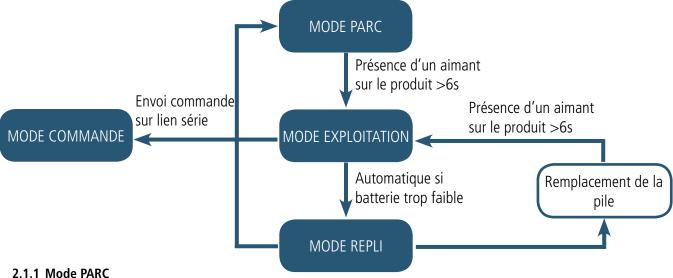
Le schéma de principe des interfaces digitales est le suivant :

Valeurs absolues maximum		Unité
Tension minimum d'entrée	- 0,7	V
Tension maximum d'entrée	+50	V

Caractéristiques électriques		Unité
Tension minimum d'entrée	0	V
Tension maximum d'entrée	24	V
Résistance d'entrée équivalente	500	kΩ
Fréquence d'entrée	10	Hz
Consommation de courant niveau d'entrée HAUT	0	μА
Consommation de courant niveau d'entrée BAS	6	μΑ

1.4.4 Compatibilité capteurs

Exemple de capteurs testés par adeunis® (liste non exhaustive)


Туре	Nom	Туре	Applications
4-20mA	EE80 E+E Electronik	CO2, Température, Humidité relative	Gestion technique bâtiments, qualité de l'air, ventilation
4-20mA	PR791F Asco Instrument	Pression	Procédés industriels, mesures statiques et dynamiques
0-10V	PF211 Mitchell instruments	Humidité relative	CVCA et régulation des conditions ambiantes
0-10V	ADT 23-110 MSR Electronic	Dioxyde d'Azote NO2	Détection dioxyde d'Azote dans garage souterrain, tunnels, abris, zones industriels
TOR	RBWF-LF S+S Regeltechnik	Luminosité, mouvement, présence	Gestion technique bâtiments, détection de présence pour gestion éclairage, ventilation

Modes de fonctionnement

2. FONCTIONNEMENT DU PRODUIT

NOTE IMPORTANTE : adeunis® utilise le format de données Big-Endian

Le produit dispose de plusieurs modes de fonctionnement :

Le produit est livré en mode PARC, il est alors en veille et sa consommation est minimale. La sortie du mode PARC s'effectue par le passage d'un aimant pendant une durée supérieure à 6 secondes. La LED verte s'allume pour signifier la détection de l'aimant et clignote ensuite rapidement pendant la phase de démarrage du produit.

Le dispositif envoie alors ses trames de configuration et de données (cf paragraphe 4.1).

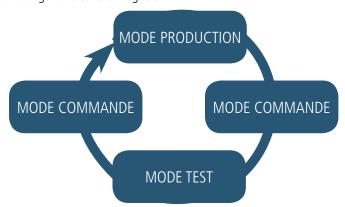
2.1.2 Mode COMMANDE

Ce mode permet de configurer les registres du produit.

Pour entrer dans ce mode, il faut brancher un câble sur le port micro-usb du produit et entrer en mode commande par une commande AT (cf paragraphe 3).

2.1.3 Modes EXPLOITATION

Il existe deux modes possibles en exploitation :


• Mode de TEST :

Ce mode permet à l'utilisateur de réaliser des essais du produit plus rapidement en réduisant les échelles de temps du mode production et en modifiant le comportement des LEDS (voir paragraphe 2.2.5).

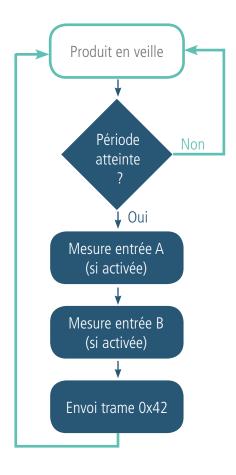
• Mode de PRODUCTION :

Ce mode permet de faire fonctionner le produit dans son utilisation finale. Il doit permettre de garantir un maximum d'autonomie au produit.

Pour passer d'un mode à l'autre on change la valeur d'un registre

Le retour au mode d'exploitation se fait par la commande ATO ou débranchement du câble USB

2.1.4 Mode REPLI


Le produit entre dans ce mode très basse consommation suite à la détection d'un niveau de batterie trop faible. Dans ce mode le produit se réveille toutes les 5 secondes pour faire clignoter 2 fois la LED rouge.

Le remplacement de la pile (si le produit est en version pile changeable) suivi de l'application de l'aimant permet de sortir de ce mode pour retourner en mode d'EXPLOITATION.

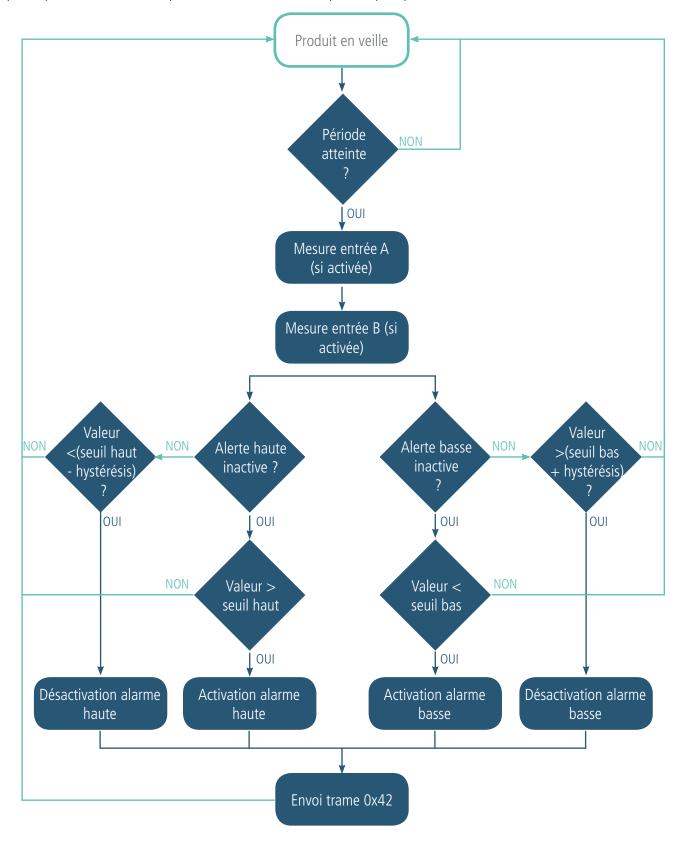
2.2. Fonctionnement applicatif

2.2.1 Transmission périodique

Le produit permet la mesure et la transmission périodique des valeurs des capteurs selon le schéma suivant :

Les paramètres associés à ce mode de fonctionnement sont :

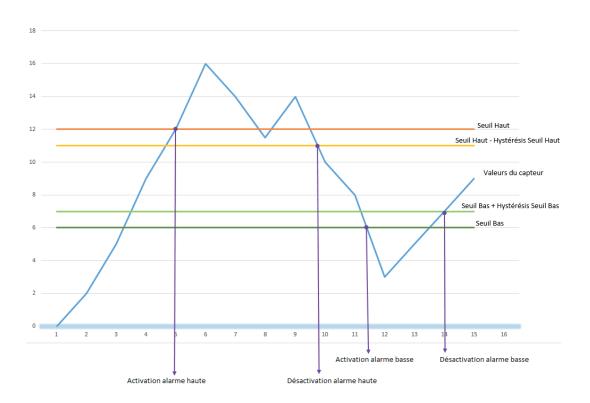
- la période de transmission (registre 301).
- la présence et le type de capteur externe (registres 320 et 322).


La liste complète des registres se trouve au paragraphe 3.4.

Exemple:

Registre	Codage de la valeur	Valeur	Résultat
S301	Décimal	6	Mode périodique avec une période de 6x10min = 60 minutes
S320	Hexadécimal	0x02	Voie A configurée pour un cap- teur 4-20mA
S322	Hexadécimal	0x01	Voie B configurée pour un cap- teur 0-10V

2.2.2 Transmission sur dépassement de seuil


Le produit permet la détection de dépassement de seuil (haut et bas) pour chaque capteur selon le schéma suivant :

Le produit envoie donc une trame de donnée lors d'un dépassement de seuil mais aussi lors d'un retour à la normale.

Explication des seuils et hystérésis :

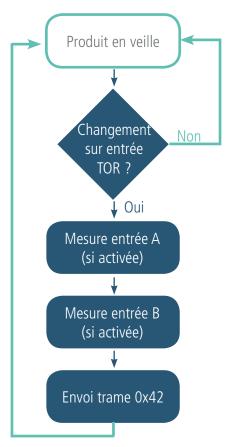
La période de scrutation des capteurs est fixée à 10 minutes (pour changer cette valeur, contactez le service support).

Les paramètres associés à ce mode de fonctionnement sont :

- La période de transmission (égale à zéro dans ce cas d'usage) (registre 301).
- La présence et le type de capteur externe (registres 320 et 322).
- La configuration des évènements (registres 321 et 323).
- Le seuil alarme haute voie A (registre 324).
- L'hystérésis alarme haute voie A (registre 325).
- Le seuil alarme basse voie A (registre 326).
- L'hystérésis alarme basse voie A (registre 327).
- Le seuil alarme haute voie B (registre 328).
- L'hystérésis alarme haute voie B (registre 329).
- Le seuil alarme basse voie B (registre 330).
- L'hystérésis alarme basse voie B (registre 331).

La liste complète des registres se trouve au paragraphe 3.4.

Exemple:


Registre	Codage de la valeur	Valeur	Résultat
S301	Décimal	0	Mode évènementiel
S320	Hexadécimal	0x02	Voie A configurée pour un capteur 4-20mA
S322	Hexadécimal	0x01	Voie B configurée pour un capteur 0-10V
S321	Hexadécimal	0x03	Sur la voie A : Détection de seuils haut et bas Détection d'évènement sur entrée TOR désactivée Pas de période de garde
S323	Hexadécimal	0x02	Sur la voie B : Détection de seuils haut uniquement Détection d'évènement entrée TOR désactivée Pas de période de garde

S324	Décimal	1 200 000	La valeur du seuil haut de la voie A est : 1 200 000x10=12 000 000nA soit 12mA
S325	Décimal	100 000	La valeur de l'hystérésis du seuil haut de la voie A est : 100 000x10=1 000 000nA soit 1mA
S326	Décimal	600 000	La valeur du seuil bas de la voie A est : 600 000x10=6 000 000nA soit 6mA
S327	Décimal	100 000	La valeur de l'hystérésis du seuil bas de la voie A est : 100 000x10=1 000 000nA soit 1mA
S328	Décimal	8 000 000	La valeur du seuil haut de la voie B est : 8 000 000µV soit 8V
S329	Décimal	1 000 000	La valeur de l'hystérésis du seuil haut de la voie B est : 1 000 000µV soit 1V
S330	Décimal	3 000 000	La valeur du seuil bas de la voie B est : 3 000 000μV soit 3V
S331	Décimal	1 000 000	La valeur de l'hystérésis du seuil bas de la voie B est : 1 000 000μV soit 1V

2.2.3 Transmission sur événement suite déclanchement entrée TOR

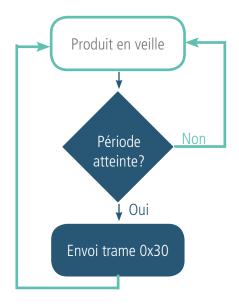
Le produit permet la mesure et la transmission des valeurs des capteurs suite à un événement sur une entrée TOR selon le schéma suivant :

Ce déclenchement peut se faire sur front montant, front descendant ou les 2. Un anti-rebond configurable est présent sur chaque entrée TOR. L'entrée TOR1 est associée à la voie A et l'entrée TOR2 à la voie B.

Les paramètres associés à ce mode de fonctionnement sont :

- La période de transmission (égale à zéro dans ce cas d'usage) (registre 301)
- La présence et type de capteur externe (registres 320 et 322).
- La configuration des évènements (registres 321 et 323).

La liste complète des registres se trouve au paragraphe 3.4.


Exemple:

Registre	Codage de la valeur	Valeur	Résultat
S301	Décimal	0	Mode évènementiel
S320	Hexadécimal	0x02	Voie A configurée pour un capteur 4-20mA
S322	Hexadécimal	0x01	Voie B configurée pour un capteur 0-10V
S321	Hexadécimal	0x1C	Voie A : Pas de détection de seuils Détection d'évènement sur entrée TOR sur fronts mon- tant et descendant Période de garde* de 10ms
S323	Hexadécimal	0x18	Voie B : Pas de détection de seuils Détection d'évènement sur entrée TOR sur front montant uniquement Période de garde* de 10ms

^{*} Période de garde (ou debounce time) : temps minimum de prise de compte d'un changement d'état. Par exemple si cette période vaut 10ms toutes les impulsions (niveau haut ou bas) dont la durée est inférieure à 10ms ne seront pas prises en compte. Cette technique évite les potentiels rebonds lors d'un changement d'état.

2.2.4 Transmission d'une trame de vie journalière

En mode évènementiel (seuil ou TOR), le produit pourrait ne jamais envoyer de trames de données. Ainsi pour s'assurer du bon fonctionnement de celui-ci une trame de vie est transmise régulièrement selon le schéma suivant :

En mode périodique il n'y a pas d'émission de trames de vie.

Les paramètres associés à ce mode de fonctionnement sont :

Le réglage de la période d'émission de la trame de vie (1 fois par heure à 1 fois par jour) (registre 300).

La liste complète des registres se trouve au paragraphe 3.4. Exemple :

Registre	Codage de la valeur	Valeur	Résultat
S300	Décimal	72	La trame de vie est envoyée toutes les : 72x10=720min
			soit 12h (donc 2 fois par jour)

FR

2.2.5 Mode TEST

Ce mode permet à l'utilisateur de réaliser des essais du produit plus rapidement en réduisant les échelles de temps du mode production et en modifiant le comportement des LEDS.

Il est obtenu en positionnant le registre S306 à la valeur 2 en mode COMMANDE. Une fois sorti du mode COMMANDE, le produit reprend le comportement applicatif précédemment défini mais avec les changements suivants :

- Registre S300 : la périodicité de la trame de vie (keep alive) est exprimée en vingtaines de secondes au lieu de dizaines de minutes. Ainsi en mode TEST lorsque le registre 300 vaut 144, la trame de vie n'est plus émise toutes les 144x10min=1440 minutes soit 24h mais toutes les 144x20s=2880 secondes soit 48 minutes.
- Registre S301 : la périodicité d'envoi des données (mode périodique) est exprimée en vingtaines de secondes au lieu de dizaines de minutes. Ainsi en mode TEST lorsque le registre 301 vaut 1, la trame de données n'est plus émise toutes les 10min mais toutes les 20 secondes.
- En mode évènementiel avec transmission sur dépassement de seuil la période de scrutation des capteurs normalement égale à 10 minutes est désormais en mode TEST réglée à 100 secondes.
- -Les LEDS ont également un comportement différent permettant un retour visuel à l'utilisateur dans les cas d'émission et de réception de trames (voir paragraphe 2.3 pour plus de détails).

La liste complète des registres se trouve au paragraphe 3.4.

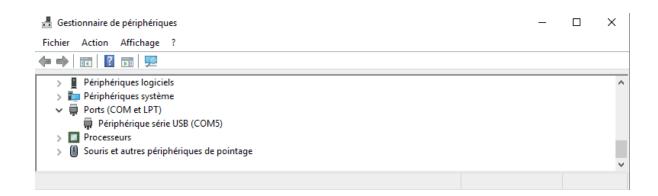
Exemple:

Registre	Codage de la valeur	Valeur	Résultat
S306	Décimal	2	Le produit est en mode TEST
S300	Décimal	72	La trame de vie est envoyée toutes les : 72x20=1440s soit 24 minutes
S301	Décimal	6	Mode périodique avec une période de 6x20 = 120s soit 2 minutes

2.3. Fonctionnement des LEDs

Mode	Etat Led Rouge	Etat Led Verte
Emission de trame (mode TEST seulement)		Allumé pendant l'émission
Réception de trame (mode TEST seulement)	Allumé pendant la réception d'une trame de downlink	
Produit en mode Park	Eteinte	Eteinte
Process de détection d'aimant (de 1 à 6 secondes)	Eteinte	ON dès détection de l'aimant à concurrence de 1 seconde
Démarrage du produit (après détection de l'aimant)	Eteinte	Clignotement rapide 6 cycles 100 ms ON / 100 ms OFF
Process de JOIN (Produit LORA)	Pendant la phase de JOIN : clignotante : 50ms ON / 1 s OFF Si phase de JOIN terminée (JOIN ACCEPT) :	Pendant la phase de JOIN : clignotante : 50ms ON / 1 s OFF (juste après LED rouge) Si phase de JOIN terminée (JOIN ACCEPT) :
	clignotante : 50ms ON / 50ms OFF (6x)	clignotante : 50ms ON / 50ms OFF (6x) (juste avant LED rouge)
Passage en mode commande	Allumée Fixe	Allumée Fixe
Niveau de batterie faible	Clignotante (0.5s ON toutes les 60s)	
Produit en défaut (retour usine)	Fixe	
Produit en mode production (mode TEST seulement)	50ms ON / 50 s OFF	50ms ON / 50 s OFF (juste avant LED rouge)
Produit en mode REPLI	clignotante (100ms ON / 100ms OFF) x2 toutes les 5s	

3. CONFIGURATION DU PRODUIT


La configuration du produit se fait au moyen du connecteur USB. Cette connexion permet de communiquer avec le produit par un port com virtuel et d'envoyer des commandes AT pour modifier les paramètres du produit.

IMPORTANT: la liaison USB n'alimente pas le produit, elle induit une consommation du produit tant que celui est connecté. Il est donc important de ne pas laisser le produit branché trop longtemps.

3.1. Connecter le produit à un ordinateur

Connectez le produit sur une entrée USB d'un ordinateur. Le produit possède un connecteur micro USB Type B. Lors de la connexion le produit doit être reconnu par l'ordinateur comme un périphérique Virtual Com Port (VCP).

Sous Windows: Une vérification du bon fonctionnement de la reconnaissance du produit par l'ordinateur peut être obtenue en consultant le gestionnaire de périphérique. Vous devez voir apparaître lors de la connexion un périphérique série USB avec un numéro de port COM associé.

Si vous ne voyez aucun périphérique de ce type, vous devez installer le driver USB pour ce périphérique, disponible sur notre site internet : https://www.adeunis.com/produit/analog/

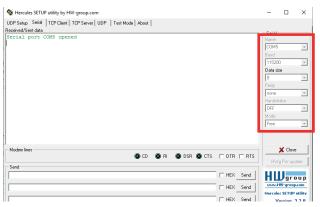
Sélectionnez :

- Driver USB-STM32_x64, si votre ordinateur est un système 64 bits
- Driver USB-STM32, si votre ordinateur est un système 32 bits

FR

3.2. Mode commande

Utiliser un terminal port COM pour communiquer avec le produit. Nous utilisons le soft terminal port COM HERCULES disponible en téléchargement gratuit à l'adresse suivante :


http://www.hw-group.com/products/hercules/index_en.html

• Sous Hercules, sélectionner l'onglet «Serial», puis configurer le port série avec les paramètres série suivants :

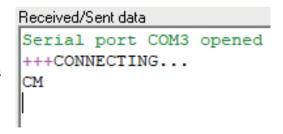
Paramètres	Valeur
Débit	115 200 bps
Parité	Aucune
Data	8
Stop Bit	1

- Sélectionner le port série sur lequel le périphérique s'est créé sous Windows (Name).
- Cliquer sur le bouton «Open» pour ouvrir le port série.

NOTE INFORMATION : Si le port com est correctement ouvert, Hercules vous indique «Serial port COM3 opened». Sinon vous avez «Serial port com opening error», soit le port com est déjà ouvert sur une autre application, soit il n'existe pas.

Vous devez envoyer une trame spécifique pour passer le produit en mode de configuration. Trame exprimée en hexadécimal : 0x2B 0x2B 0x2B ou « +++ ».

Pour Hercules, cette trame doit être entrée dans l'une des 3 lignes disponibles en bas. Le format hexadécimal doit être exprimé avec un «\$» dans ce logiciel. Ce qui donne la trame suivante : \$2B\$2B\$2B.


Envoyer la trame de passage en mode commande pour basculer le produit en mode de configuration, en cliquant sur le bouton SEND.

Après quelques secondes, vous devez voir les 2 LEDs s'allumer de manière fixe.

Sur le terminal port com, vous devez également avoir un retour d'information «CONNECTING...» et « CM » pour Command Mode.

L'envoi de caractère sur Hercule s'affiche en magenta et la réception en noir. Si vous ne voyez pas les caractères d'envoi, c'est probablement parce que l'ECHO n'est pas actif sur le logiciel. Activer l'option dans le menu accessible par un clic droit dans la fenêtre de visualisation.

3.3. Commande AT

Une commande débute avec les 2 caractères ASCII : « AT », suivis d'un ou plusieurs caractères et données (voir ci-après la syntaxe des commandes AT disponibles sur le modem).

Chaque commande doit se terminer par un « CR » ou « CR » «LF », les deux possibilités sont acceptées. (CR signifie : Carriage Return, LF signifie : Line Feed).

À la réception d'une commande, le modem retourne :

- « Les données » < cr> < lf>, pour une commande de lecture type ATS < n> ? , AT/S ou AT/V.
- « 0 » <cr><lf>, pour toutes les autres commandes lorsque celle-ci est acceptée.
- « E » <cr><lf>, s'il refuse la commande car erreur de syntaxe, commande inconnue, registre inconnu, paramètre invalide,
- « CM » <cr><lf>, s'il accepte l'entrée en mode commande

Tableau des commandes AT:

Commande	Description	Exemple de réponse
+++	Démarrage du mode Commande	CONNECTING <cr><lf>CM<cr><lf></lf></cr></lf></cr>
ATPIN <pin></pin>	Donne accès aux commandes AT si le registre S304 est différent de 0	
AT/V	Affiche les versions logicielles Applicatif et RTU	APP_8230EAA_PRG1706_V01.02.02:RTU_RTU_WM-BUS_868_PRG_1601_V00.00.03 Ou selon la version du réseau APP_8181AAA_PRG1701_V01.00.02:RTU_8120AAB_ PRG_1701_V01.00.01
AT/N	Affiche le type de réseau	"LoRa" ou "SIGFOX" ou « WMBUS »
ATS <n>?</n>	Renvoi le contenu du registre <n></n>	S <n>=<y><cr><lf> with <y> as the register content</y></lf></cr></y></n>
AT/S	Affiche tous les registres Utilisateur	1
ATS <n>=<m></m></n>	Assigne la valeur <m> au registre <n></n></m>	«O» <cr><lf> if Ok, «E»<cr><lf> if error, «W»<cr><lf> if coherency error</lf></cr></lf></cr></lf></cr>
AT&W	Sauve la nouvelle configuration	«O» <cr><lf>, «W»<cr><lf> if coherency error</lf></cr></lf></cr>
ATO	Fin du mode Commande	«O» <cr><lf>, «W»<cr><lf> if coherency error</lf></cr></lf></cr>
ATT63 PROVIDER	Mot de passe PROVIDER	«0» <cr><lf></lf></cr>

Exemple d'une suite de commandes et de réponses correspondantes telles qu'on pourrait les voir sur un terminal :

Syntaxe de la Commande	Description	Syntaxe de la réponse à la ligne suivante
+++	Demande d'entrée en mode commande	CONNECTING CM
ATS221=1	Demande de passage en mode d'activation OTAA	0
ATS214=0018B200	Modification APP_EUI MSB	E -> Cette commande n'est pas valide (registre non débloqué)
ATT63 PROVIDER	Déblocage registre opérateur	0
ATS214=0018B200	Modification APP_EUI MSB	0
ATS215?	Retourne la valeur du registre S215	S200=44512451
AT&W	Demande de mémorisation de l'état des registres	0
ATO	Demande de sortie du mode commande	0

Interprétation de l'exemple ci-avant : l'utilisateur a voulu modifier le début de l'APP_EUI après avoir fait une commande non autorisée (réponse E), un déblocage des registres a été réalisé pour modifier ce registre. Une vérification de la deuxième partie de l'APP_EUI est effectuée et une sauvegarde des paramètres avant sortie est réalisée. Dès la sortie du produit du mode commande, le produit effectue une demande de JOIN.

3.4. Description des registres

A la mise sous tension le produit fonctionne selon la dernière configuration sauvegardée (configuration usine si c'est la première mise sous tension, ou si cette configuration n'a pas été changée).

Les commandes de modification type ATS<n>=<m> ou ATR permettent de modifier le contenu des registres : ; <n> représentant le numéro du registre et <m> la valeur à assigner. Cette dernière est soit une valeur décimale soit une valeur hexadécimale en cohérence avec la colonne « Codage » des tableaux ci-après.

Exemples:

- ATS300=6 assigne la valeur décimale 6 au registre 300
- ATS320=2 assigna la valeur hexadécimale 0x02 au registre 320

Il est impératif de sauvegarder les paramètres par la commande AT&W avant de sortir du mode commande sinon tous les changements seront perdus.

IMPORTANT : les registres non documentés (pouvant apparaître dans la liste suite à la commande AT/S) dans les paragraphes qui suivent sont réservés et ne doivent pas être modifiés.

3.4.1 Registres fonction

La liste des registres ci-dessous permet de modifier le comportement applicatif du produit.

Registre	Taille (octets)	Description	Codage	Détails
300	1	Période de transmission de la trame de vie	Décimal	Défaut : 144 Min/max : 1 à 255 Unité : x 10min si S306=1 x 20s si S306=2
301	1	Période de transmission des données capteurs	Décimal	Défaut : 1 Min/max : 0 à 255 Unité : x 10min si S306=1 x 20s si S306=2 La valeur 0 signifie pas d'envoi périodique donc un fonctionnement événementiel
303	1	Activation du mode acquitté	Décimal	Défaut : 0 (désactivé) Valeurs : 0 (désactivé) à 1 (activé)
304	2	Code PIN	Décimal	Défaut : 0 (désactivé) Min/max : 0 à 9999 Code PIN utilisé avec la commande ATPIN. La valeur 0 désactive le code PIN. ATTENTION : le produit ne possède pas de mécanisme de déverrouillage du code PIN en cas d'activation de celui-ci et d'oubli du code.
306	1	Mode de fonctionnement	Décimal	Défaut : 0 Permet de passer le produit dans l'un des modes suivants : • 0: mode PARC • 1: mode PRODUCTION • 2: mode TEST • 3: mode REPLI

320	2	Configuration du capteur de la voie A	Hexadécimal	Défaut : 0x00 Bits 0 à 3 : Type • 0 = Aucun • 1 = 0-10 V • 2 = 4-20 mA Bits 4 à 7 : Identifiant (libre d'utilisation) IMPORTANT : si aucune des voies (A et B) n'est configurée (valeur = Aucun), le produit enverra la trame de configuration 0x10 périodiquement (période définie par le registre 300)
321	1	Configuration du comportement événementiel de la voie A	Hexadécimal	Défaut 0x10 Bits 0 à 1 : Déclenchement sur seuil • 0 = Aucun • 1 = Bas uniquement • 2 = Haut uniquement • 3 = Bas et Haut Bits 2 à 3 : Déclenchement par entrée TOR • 0 = Désactivé • 1 = Front montant • 2 = Front descendant • 3 = Fronts montant et descendant Bits 4 à 7 : Durée de la période de garde • 0 : Aucune • 1 : 10 ms • 2 : 20 ms • 3 : 50 ms • 4 : 100 ms • 5 : 200 ms • 6 : 500 ms • 7 : 1 s
322	1	Configuration du capteur de la voie B	Hexadécimal	Voir détails registre 320
323	1	Configuration du compor- tement événementiel de la voie B	Hexadécimal	Voir détails registre 321
324	4	Valeur seuil Haut voie A	Décimal	Défaut : 0 Pour un capteur 4-20mA : • Unité : x 10nA • Valeurs Min/Max : 400 000 à 2 000 000 Exemple : si S324=1 100 000, le seuil haut aura une valeur de 1100000x10=11 000 000nA soit 11mA Pour un capteur 0-10V : • Unité : x 1μV • Valeurs Min/Max : 0 à 10 000 000 Exemple : si S324=9 000 000, le seuil haut aura une valeur de 9 000 000μV soit 9V
325	4	Valeur de l'hystérésis seuil Haut voie A	Décimal	Défaut : 0 Pour un capteur 4-20mA : • Unité : x 10nA • Valeurs Min/Max : 0 à 1 600 000 Exemple : si S325=100 000, l'hystérésis du seuil haut aura une valeur de 100000x10=1 000 000nA soit 1mA Pour un capteur 0-10V : • Unité : x 1µV • Valeurs Min/Max : 0 à 10 000 000

326	4	Valeur seuil Bas voie A	Décimal	Défaut: 0 Pour un capteur 4-20mA: • Unité: x 10nA • Valeurs Min/Max: 400 000 à 2 000 000 Exemple: si S326=600 000, le seuil bas aura une valeur de 600000x10=6 000 000nA soit 6mA Pour un capteur 0-10V: • Unité: x 1μV • Valeurs Min/Max: 0 à 10 000 000 Exemple: si S326=1 000 000, le seuil haut aura une valeur de 1 000 000μV soit 1V
327	4	Valeur de l'hystérésis seuil Bas voie A	Décimal	Défaut: 0 Pour un capteur 4-20mA: • Unité: x 10nA • Valeurs Min/Max: 0 à 1 600 000 Exemple: si S327=200 000, l'hystérésis du seuil bas aura une valeur de 200000x10=2 000 000nA soit 2mA Pour un capteur 0-10V: • Unité: x 1µV • Valeurs Min/Max: 0 à 10 000 000 Exemple: si S327=3 000 000, l'hystérésis du seuil bas aura une valeur de 3 000 000µV soit 3V
328	4	Valeur seuil Haut voie B	Décimal	Voir registre 324
329	4	Valeur de l'hystérésis seuil Haut voie B	Décimal	Voir registre 325
330	4	Valeur seuil Bas voie B	Décimal	Voir registre 326
331	4	Valeur de l'hystérésis seuil Bas voie B	Décimal	Voir registre 327

3.4.2 Registres réseau

La liste des registres ci-dessous permet de modifier les paramètres réseau du produit. Cette liste est accessible en mode PROVIDER suite à l'exécution de la commande ATT63 PROVIDER.

Ces registres doivent être manipulés avec précaution car susceptibles d'engendrer des problèmes de communication ou de non-respect de la législation en vigueur.

Registre	Description	Codage	Détails
201	Facteur d'étalement (SF) par défaut	Décimal	Défaut : 12 (868) ou 10 (915) selon la référence du produit Min/max : 4 à 12 Unité : aucune
214	LORA APP-EUI (première partie – MSB)	Hexadécimal	Défaut : 0
215	LORA APP-EUI (deuxième partie – LSB)	Hexadécimal	Clé codée sur 16 caractères. Chaque registre contient une partie de la clé. Utilisée lors de la phase de JOIN en mode OTAA
			Exemple: APP-EUI = 0018B244 41524632 • S214 = 0018B244 • S215 = 41524632

216	LORA APP-KEY (première partie – MSB)	Hexadécimal	Défaut : 0
217	LORA APP-KEY (deuxième partie – MID MSB)	Hexadécimal	Clé codée sur 32 caractères octets. Chacun des 4 registres
218	LORA APP-KEY (troisième partie – MID LSB)	Hexadécimal	contient 8 caractères.
219	LORA APP-KEY (quatrième partie – LSB)	Hexadécimal	Utilisée lors de la phase de JOIN en mode OTAA
			Exemple: APP-KEY = 0018B244 41524632 0018B200 00000912 • S216 = 0018B244 • S217= 41524632 • S218 = 0018B200 • S219 = 00000912
220	Options LoRaWAN	Hexadécimal	Défaut : 5
			Bit 0 : Activation de l'ADR ON(1)/OFF(0) Bit 1 : Réservé Bit 2 : DUTYCYCLE ON(1)/DUTYCYCLE OFF(0) Bit 3 à 7 : Réservés ATTENTION : La désactivation du Duty Cycle peut entrainer selon l'usage du produit un non-respect des conditions d'utilisation de la bande de fréquence donc une violation de la réglementation en vigueur. Dans le cas de la désactivation du Duty Cycle la responsabilité est transférée à l'utilisateur.
221	Mode d'activation	Décimal	Défaut : 1
			Choix: (voir NOTE1 après le tableau) • 0 : ABP • 1: OTAA
222	LORA NWK_SKEY (première partie – MSB)	Hexadécimal	Défaut : 0
223	LORA NWK_SKEY (deuxième partie - MID MSB)	Hexadécimal	Paramètre codé sur 16 octets. Chacun des 4 registres contient 4 octets.
224	LORA NWK_SKEY (troisième partie - MID LSB)	Hexadécimal	
225	LORA NWK_SKEY (quatrième partie – LSB)	Hexadécimal	
226	LORA APP_SKEY (première partie – MSB)	Hexadécimal	Défaut : 0
227	LORA APP_SKEY (deuxième partie - MID MSB)	Hexadécimal	Paramètre codé sur 16 octets. Chacun des 4 registres
228	LORA APP_SKEY (troisième partie - MID LSB)	Hexadécimal	contient 4 octets.
229	LORA APP_SKEY (quatrième partie – LSB)	Hexadécimal	
250	Configuration Canal 0	Décimal (868) Hexadécimal (915)	Défaut : 1 Canal de fonctionnement obligatoire LoRaWAN Ne pas changer cette valeur
251	Configuration Canal 1	Décimal (868) Hexadécimal (915)	Défaut : 1 (868) ; 0 (915) Canal de fonctionnement obligatoire LoRaWAN Ne pas changer cette valeur
252	Configuration Canal 2	Décimal (868) Hexadécimal (915)	Défaut : 1 Canal de fonctionnement obligatoire LoRaWAN Ne pas changer cette valeur
253	Configuration Canal 3	Décimal (868) Hexadécimal (915)	Défaut : 0 (868) ; 1 (915) 0 : Canal désactivé Autre : Configuration utilisateur (NOTE2)

254	Configuration Canal 4	Décimal (868) Hexadécimal (915)	Défaut : 0 0 : Canal désactivé Autre : Configuration utilisateur (NOTE2)
255	Configuration Canal 5	Décimal (868) Hexadécimal (915)	Défaut : 0 (868) ; 1 (915) 0 : Canal désactivé Autre : Configuration utilisateur (NOTE2)
256	Configuration Canal 6	Décimal (868) Hexadécimal (915)	Défaut : 0 0 : Canal désactivé Autre : Configuration utilisateur (NOTE2)
257	Configuration RX2	Décimal (868) Hexadécimal (915)	Défaut : 1 0 : Canal désactivé 1 : Configuration par défaut LoRaWAN Autre : Configuration utilisateur
258	Type de bande (uniquement en 915)	Décimal	Défaut : 3 Min/max : 0 à 3
280	NETWORK ID	Hexadécimal	Défaut 0 Lecture seule
281	DEVICE ADDRESS	Hexadécimal	Défaut : 0

NOTE 1:

Le mode «Over The Air Activation» (OTAA), utilise une phase de JOIN avant de pouvoir émettre sur le réseau. Ce mode utilise les codes APP_EUI (S214 et S215) et APP_KEY (S216 à S219) pendant cette phase pour créer les clés de communication réseau. Une fois cette phase terminée, les codes APP_sKEY, NWK_sKEY et DEVICE ADDRESS seront présents dans les registres correspondants.

Une nouvelle phase de JOIN est démarrée à chaque fois que le produit sort du mode commande, qu'un reset est effectué ou que le produit est mis sous tension.

Codes:

- APP_EUI Identifiant d'application global (fourni par défaut par adeunis®)
- APP_KEY Clé d'application du device (fourni par défaut par adeunis®)

Le mode «Activation By Personalization» (ABP), n'a pas de phase de JOIN, il émet directement sur le réseau en utilisant directement les codes NWK_sKEY (S222 à S225), APP_sKEY (S226 à S229) et DEVICE ADDRESS (S281) pour communiquer.

Codes:

- NWK_sKEY Clé de session réseau (fourni par défaut par adeunis®)
- APP_sKEY Clé de session applicative (fourni par défaut par adeunis®)
- DEVICE ADDRESS Adresse du device dans le réseau (fourni par défaut par adeunis®)

NOTE 2:

Par défaut, les canaux 0 à 2 utilisent les paramètres par défaut du réseau LoRaWAN, les 4 autres canaux sont inactifs. Une valeur du registre différente de 0 ou 1 permet de configurer le canal comme suit :

Bit	7	6	5	4	3	2	1	0	
Description		Fréquence du canal DR Max DR N							
Exemple				5	3				

Valeur Data Rate (DR)	Description
0	SF12
1	SF11
2	SF10
3	SF9
4	SF8
5	SF7
6	SF7 – BW 250kHz
7	FSK 50 kps

L'exemple donné permet de configurer une fréquence de 868.1 Hz et autorise un SF de 7 à 9. La commande à envoyer pour réaliser cette opération est :

ATS250=86810053<cr>

FR

4. DESCRIPTION DES TRAMES

4.1. Trames montantes (uplink)

Toutes les trames montantes du produit vers le réseau (uplink) ont toujours une taille de 11 octets.

4.1.1 Octets fixes

Les deux premiers octets de la trame sont systématiquement dédiés pour indiquer le code de la trame et le statut comme présenté ci-dessous :

0	1	2	3	4	5	6	7	8	9	10
Code	Statut					PAYLOAD				

4.1.1.01 Code byte

Cet octet contient le code associé à la trame pour faciliter le décodage de celle-ci par le système d'information.

4.1.1.02 Status byte

L'octet de statut (status byte) est décomposé de la manière suivante :

Alarm Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Frame Counter		Réservé	Réservé	HW	Low Bat	Config
No Error				Χ	Χ	0	0	0
Configuration done		0x00 to 0x07		Х	Х	0	0	1
Low bat				Х	Х	0	1	0
HW Error				Х	Х	1	0	0

Détails des champs :

- Frame counter : compteur de trames, il s'incrémente à chaque émission et permet rapidement de voir si une trame a été perdue. Il compte de 0 à 7 avant de reboucler.
- HW : ce bit est mis à 1 lorsqu'une erreur matérielle s'est produite, par exemple un problème d'écriture en EEPROM, un problème de lecture sur l'ADC...Le produit doit être retourné en SAV.
- Low Bat : bit à 1 si la tension batterie est inférieure à 2,5V, sinon 0. Cette information reste permanente.
- Confg: bit à 1 si une confguration a été réalisée lors de la dernière trame descendante, sinon 0. Ce bit retourne à 0 dès la trame suivante.

Exemple:

Une valeur de l'octet statut égale 0xA2 (= 10100010 en binaire) donne :

- Bit 7 à 5 = 101 = 0x05 soit un compteur de trame à 5
- Bit 4 à 0 = 00010 en binaire soit une alarme batterie faible

4.1.2 Trames d'information sur la configuration du produit

Lors du passage en mode exploitation (sortie du mode PARC ou COMMANDE), les trames suivantes (0x10 à 0x14) représentant la configuration applicative du produit sont transmises :

0	1	2	3	4	5	6	7	8	9	10
Code	Status					PAYLOAD				
0x10	Cf Status	S300	S301	S320	S321	S322	S323	S306	Χ	Х
0x10	0x42	0x48	0x00	0x02	0x03	0x01	0x02	0x01		

Description de la trame :

- Octet 2 : registre 300, périodicité de la trame de vie, exprimé en dizaine de minutes
- Octet 3 : registre 301, périodicité de la transmission (Mode périodique), exprimé en dizaine de minutes
- Octet 4: registre 320, configuration du capteur voie A
- Octet 5 : registre 321, configuration des évènements de la voie A
- Octet 6 : registre 322, configuration du capteur voie B
- Octet 7 : registre 323, configuration des évènements de la voie B
- Octet 8 : registre 306, mode du produit (PARC, STANDARD (production), TEST ou REPLI)

Dans l'exemple en gris cela donne :

- Octet 2=0x48 : registre 300, trame de vie émise toutes les 12 heures
- Octet 3=0x00 : registre 301, mode événementiel
- Octet 4=0x02 : registre 320, Voie A configurée pour un capteur 4-20mA
- Octet 5=0x03 : registre 321 :
 - o Détection de seuils haut et bas sur la voie A
 - o Détection d'évènement sur entrée TOR désactivée
 - o Pas de période de garde
- Octet 6=0x01 : registre 322, Voie B configurée pour un capteur 0-10V
- Octet 7=0x02 : registre 323 :
 - o Détection de seuils haut uniquement
 - o Détection d'évènement entrée TOR désactivée
 - o Pas de période de garde
- Octet 8=0x01 : registre 306, mode PRODUCTION en cours

IMPORTANT : si aucune des voies n'est configurée (valeur = Aucun dans les registres 320 et 322), le produit enverra la trame de configuration 0x10 périodiquement (période définie par le registre 300)

0	1	2	3	4	5	6	7	8	9	10
Code	Status	PAYLOAD								
0x11	Cf Status		S324			S325		Χ	Х	Χ
0x11	0x42		0x124F80			0x0186A0				

Description de la trame :

- Octets 2 à 4 : registre 324, seuil haut du capteur voie A
- Octets 5 à 7 : registre 325, hystérésis haut du capteur voie A

Dans l'exemple en gris cela donne :

- Octets 2 à 4=0x124F80=1 200 000 en décimal : registre 324, la valeur du seuil haut pour la voie A est : 1 200 000x10=12 000 000nA
- Octets 5 à 7=0x0186A0=100 000 en décimal : registre 325, la valeur de l'hystérésis haut pour la voie A est : 100 000x10=1 000 000nA soit 1mA

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							
0x12	Cf Status		S326			S327		Х	Χ	Х
0x12	0x42		0x0927C0			0x0186A0				

FR

Description de la trame :

- Octets 2 à 4 : registre 326, seuil bas du capteur voie A
- Octets 5 à 7 : registre 327, hystérésis bas du capteur voie A

Dans l'exemple en gris cela donne :

- Octets 2 à 4=0x0927C0=600 000 en décimal : registre 326, la valeur du seuil bas pour la voie A est : 600 000x10=6 000 000nA soit 6mA
- Octets 5 à 7=0x0186A0=100 000 en décimal : registre 327, la valeur de l'hystérésis bas pour la voie A est : 100 000x10=1 000 000nA soit 1mA

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							
0x13	Cf Status	S328			S329			Χ	Х	Х
0x13	0x42	0x7A1200			0x0F4240					

Description de la trame :

- Octets 2 à 4 : registre 328, seuil haut du capteur voie B
- Octets 5 à 7 : registre 329, hystérésis haut du capteur voie B

Dans l'exemple en gris cela donne :

- Octets 2 à 4=0x7A1200=8 000 000 en décimal : registre 328, la valeur du seuil haut pour la voie B est : 8 000 000 μV soit 8V
- Octets 5 à 7=0x0F4240=1 000 000 en décimal : registre 329, la valeur de l'hystérésis haut pour la voie B est : 1 000 000μV soit 1V

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							
0x14	Cf Status		S330			S331			Х	Х
0x14	0x42		0x2DC6C0			0x0F4240				

Description de la trame :

- Octets 2 à 4 : registre 330, seuil bas du capteur voie B
- Octets 5 à 7 : registre 331, hystérésis bas du capteur voie B

Dans l'exemple en gris cela donne :

- Octets 2 à 4=0x2DC6C0=3 000 000 en décimal : registre 330, la valeur du seuil bas pour la voie B est : 3 000 000 μV soit 3V
- Octets 5 à 7=0x0F4240=1 000 000 en décimal : registre 331, la valeur de l'hystérésis bas pour la voie B est : 1 000 000μV soit 1V

4.1.3 Trame d'information sur la configuration du réseau

Lors du passage en mode exploitation (sortie du mode PARC ou COMMANDE), la trame suivante (0x20) représentant la configuration réseau du produit est transmise :

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							
0x20	Cf Status	ADR	MODE	Χ	Χ	Х	Χ	Χ	Χ	Χ
0x20	0x42	0x01	0x01							

Description de la trame :

- Octet 2 : activation de l'Adaptative Data Rate : ON (valeur = 1) ou OFF (valeur = 0)
- Octet 3 : mode de connexion : ABP (valeur = 0) ou OTAA (valeur = 1)

Dans l'exemple en gris cela donne :

- Octet 2=0x01 : l'Adaptative Data Rate est activé
- Octet 3=0x01 : mode de connexion OTAA

4.1.4 Trame de vie (keep alive)

Cette trame (0x30) est émise uniquement dans le mode évènement à la fréquence définie par le registre 300.

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							
0x30	Cf Status	Type capteur	Valeur lu	Valeur lue sur le capteur voie A			Valeur lu	Х		
0x30	0x42	0x01		0x0C3500				0x4C4B40		

Description de la trame :

- Octet 2 : type du capteur de la voie A. Configuré par l'utilisateur (registre 320).
- Octets 3 à 5 : valeur mesurée sur la voie A.
- Si le type du capteur est 0-10V : la valeur est exprimée en μV
- Si le type du capteur est 4-20mA : la valeur est exprimée en dizaine de nA
- Octet 6 : type du capteur de la voie B. Configuré par l'utilisateur (registre 322).
- Si le type du capteur est 0-10V : la valeur est exprimée en μV
- Si le type du capteur est 4-20mA : la valeur est exprimée en dizaine de nA
- Octet 7 à 9 : valeur mesurée sur la voie B

Dans l'exemple en gris cela donne :

- Octet 2=0x02 : registre 320, Voie A configurée pour un capteur 4-20mA
- Octets 3 à 5=0x0C3500=800 000 en décimal soit une valeur mesurée sur la voie A de : 800 000 x10=8 000 000nA soit 8mA
- Octet 6=0x01 : registre 322, Voie B configurée pour un capteur 0-10V
- Octet 7 à 9=0x4C4B40 =5 000 000 en décimal soit une valeur mesurée sur la voie B de : 5 000 000 µV soit 5V

4.1.5 Trame de réponse à une demande de valeur de registre(s)

Cette trame (0x31) est émise suite à la réception d'une trame descendante (downlink) avec le code 0x40 (voir paragraphe 4.2.4). Elle contient les valeurs des registres demandés dans la trame descendante 0x40.

Trame envoyée (0x40) vers le produit (downlink) :

0	1	2	3	4	5		n
Code							
0x40	CONFID1	CONFID2	CONFID3	Χ	Х	Χ	CONFIDn

Les champs CONFIDX (8bits) représentent les indices des registres à envoyer. Le registre correspondant est 300 + valeur de CONFIDX.

Trame transmise en retour par le produit

0	1	2	3	4	5		11			
Code	Status		PAYLOAD							
0x31	Cf Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	Χ			

Dans cet exemple : CONFID1 est un registre de 2 octets, CONFID2 de 1 octet et CONFID3 de 2 octets Si une erreur est détectée dans la requête, la trame 0x31 renvoyée sera vide.

4.1.6 Trame de données

Cette trame (0x42) contient les valeurs relevées sur les différents capteurs.

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							
0x42	Cf Status	S320	Valeur lu	Valeur lue sur le capteur voie A			Valeur lue sur le capteur voie B			Χ
0x42	0x42	0x02	0x0C3500			0x01	0x4C4B40			

FR

Description de la trame :

- Octet 2 : type du capteur de la voie A. Configuré par l'utilisateur (registre 320).
- Octets 3 à 5 : valeur mesurée sur la voie A.
 - Si le type du capteur est 0-10V : la valeur est exprimée en μV
 - Si le type du capteur est 4-20mA : la valeur est exprimée en dizaine de nA
- Octet 6 : type du capteur de la voie B. Configuré par l'utilisateur (registre 322).
- Octet 7 à 9 : valeur mesurée sur la voie B
 - Si le type du capteur est 0-10V : la valeur est exprimée en μV
 - Si le type du capteur est 4-20mA : la valeur est exprimée en dizaine de nA

Dans l'exemple en gris cela donne :

- Octet 2=0x02 : registre 320, Voie A configurée pour un capteur 4-20mA
- Octets 3 à 5=0x0C3500=800 000 en décimal soit une valeur mesurée sur la voie A de : 800 000 x10=8 000 000nA soit 8mA
- Octet 6=0x01 : registre 322, Voie B configurée pour un capteur 0-10V
- Octet 7 à 9=0x4C4B40 =5 000 000 en décimal soit une valeur mesurée sur la voie B de : 5 000 000 μV soit 5V

4.1.7 Synthèse des conditions d'envoi des trames montantes

Le tableau ci-après résume les conditions d'envoi des différentes trames montantes :

Code	Description	Scenarii d'envoi
0x10 0x11 0x12 0x13 0x14	Trames d'information sur la configuration du produit	 Démarrage du produit Sortie du mode configuration (AT commande) Réception d'une trame descendante 0x01 Périodiquement si les entrées sont désactivées (période définie par le registre 300)
0x20	Trames d'information sur la configuration du réseau	 Démarrage du produit Sortie du mode configuration (AT commande) Réception d'une trame descendante 0x02
0x30	Trame de vie	Périodiquement en mode «Evènement»
0x31	Trame de réponse à une demande de valeur de registre(s)	Réception d'une trame descendante 0x40
0x42	Trame de données	 Démarrage du produit Evénement sur entrée (TOR) configurée en mode évènementiel Franchissement d'un seuil (mode évènement) Fin de période sur entrée configurée en mode périodique

4.2. Trames descendantes (downlink)

La technologie LoRaWAN permet de transmettre des informations au produit depuis le réseau (downlink).

La classe A de la spécification LoRaWAN permet au produit de recevoir des informations du réseau en proposant deux fenêtres d'écoute après chaque communication montante (trame d'uplink).

4.2.1 Trame de demande de la configuration du produit

Cette trame permet de faire savoir au produit via le réseau qu'il doit réémettre la trame montante de configuration du produit (0x10).

0	1	2	3	4	5	6	7			
Code	PAYLOAD									
0x01	Х	Х	Х	Х	Х	Х	Χ			

4.2.2 Trame de demande de la configuration du réseau

Cette trame permet de faire savoir au produit via le réseau qu'il doit réémettre la trame montante de configuration du réseau (0x20).

0	1	2	3	4	5	6	7
Code		PAYLOAD					
0x02	Х	Х	Х	Х	Х	X	Х

4.2.3 Trame de demande de valeur de registres spécifiques

Cette trame (0x40) permet de faire savoir au produit via le réseau qu'il doit émettre les valeurs des registres demandés.

Trame 0x40:

0	1	2	3	4	5		n
Code	PAYLOAD						
0x40	CONFID1	CONFID2	CONFID3	Х	Х	X	CONFIDn

Description de la trame :

Octets 1 à 7 : CONFIDX (8bits): indice du registre à envoyer. Le registre correspondant est 300 + valeur de CONFIDX.

Par exemple, si CONFID1 = 20, le transmetteur enverra en retour la valeur du registre 320.

La trame descendante associée porte le code 0x31 (voir paragraphe 4.1.5).

0	1	2	3	4	5		11
Code	PAYLOAD						
0x31	Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	X

Dans cet exemple : CONFID1 est un registre de 2 octets, CONFID2 de 1 octet et CONFID3 de 2 octets

Si une erreur est détectée dans la requête, la trame 0x31 renvoyée sera vide.

IMPORTANT : l'utilisateur peut spécifier plusieurs CONFID dans sa trame de downlink mais il est à sa charge de vérifier que selon le protocole, la taille des données disponibles dans une trame descendante sera suffisamment grande pour contenir l'ensemble des données souhaitées. Dans le cas contraire, l'application enverra seulement les premières valeurs.

4.2.4 Trame de mise à jour de la valeur de registres spécifiques

Cette trame (0x41) permet via le réseau de modifier sur le produit les valeurs des registres demandés.

Trame 0x41:

0	1	2	3	4	5	 n
Code				PAYLOAD		
0x41	CONFID1	Valeur de CONFID1	CONFID2	Valeur de CONFID2	Valeur de CONFID2	 Valeur de CONFIDn

Description de la trame :

- Octet 1 : CONFID1 (8bits) : indice du registre à modifier. Le registre correspondant est 300 + valeur de CONFIDX. Par exemple, si CONFID1 = 20, le transmetteur modifiera la valeur du registre 320.
- Octet2 : Valeur à donner à CONFID1 : dans cet exemple, sa valeur est contenue sur 1 octet
- Octet 3 : CONFID2 (8bits) : indice du registre à modifier. Le registre correspondant est 300 + valeur de CONFIDX.
- Octets 4 et 5 : Valeur à donner à CONFID2 : dans cet exemple, sa valeur est contenue sur 2 octets
- ..

Le produit ne retourne pas de trame montante en retour. Cependant le bit Config de l'octet de statut (voir paragraphe 4.1.1.2) sera mis à 1 si tout s'est bien passé dans la prochaine trame montante prévue (trame périodique ou d'alarme ou de vie).

Note importante : la valeur 0xFF pour un CONFIDX stoppera à cet endroit la lecture de la trame descendante. Seules les octets précédents cette valeur 0xFF seront pris en compte.

Ce mécanisme peut s'avérer utile lorsque vous devez travailler en longueur de trames de downlink fixe et que vous ne souhaitez pas utiliser tous les octets disponibles.

5. PREPARATION ET CONFIGURATION

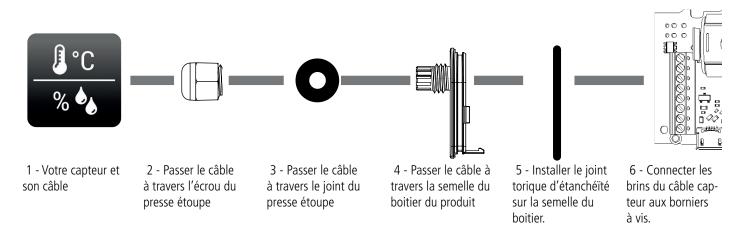
5.1. Démontage du boîtier

Le produit est livré démonté, de sorte à pouvoir accéder à la partie basse de l'électronique. Cette partie permet le branchement du ou des capteurs sur les borniers à vis ainsi que l'accès aux switches de configuration.

Une fois le montage des capteurs finalisé et la configuration effectuée, la fermeture du boîtier pourra être faite. Attention : une fois le boîtier fermé, son ouverture n'est plus possible sans risque de perdre la garantie de l'indice de protection IP67.

5.2. Installation du joint presse étoupe

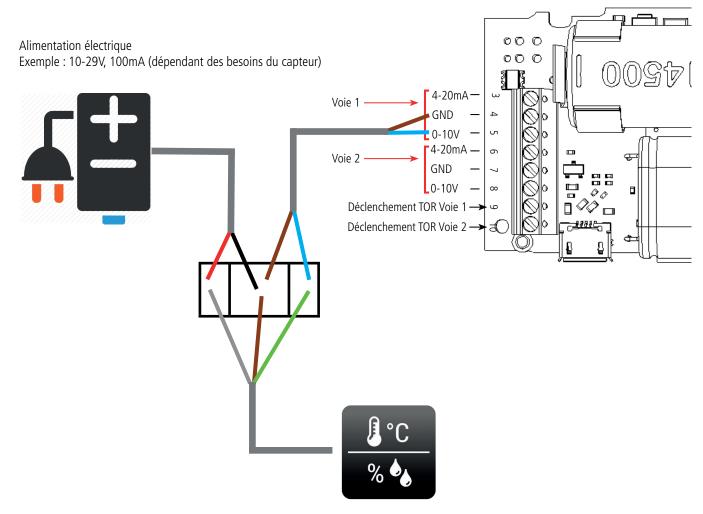
Avant de connecter les brins du câble de votre capteur aux borniers à vis du produit, vous devez insérer l'écrou du presse étoupe et le joint adapté à votre configuration.


Trois types de joints sont fournis avec le produit : pour un câble diamètre 5 mm, pour un câble de diamètre 3 mm, pour deux câbles de diamètres 2.2 mm.

Procédure de montage :

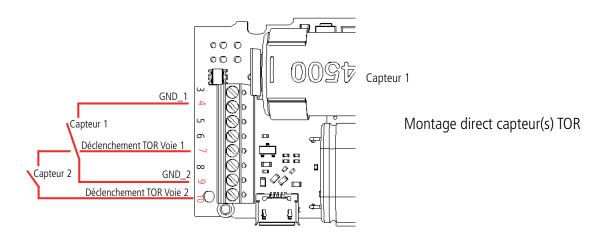
5.3. Montage des capteurs sur les borniers à vis

Une fois l'écrou et le joint de presse étoupe installés, les brins du câble du capteur peuvent être connectés aux borniers à vis du produit :


Note: 2 capteurs au maximum peuvent être utilisés en parallèle. Le choix entre analogique et numérique est libre pour l'utilisateur.

Les capteurs analogiques nécessitent une alimentation électrique que la batterie du LoRaWAN ANALOG n'est pas en mesure de fournir. On doit donc alimenter le capteur analogique via une source électrique externe.

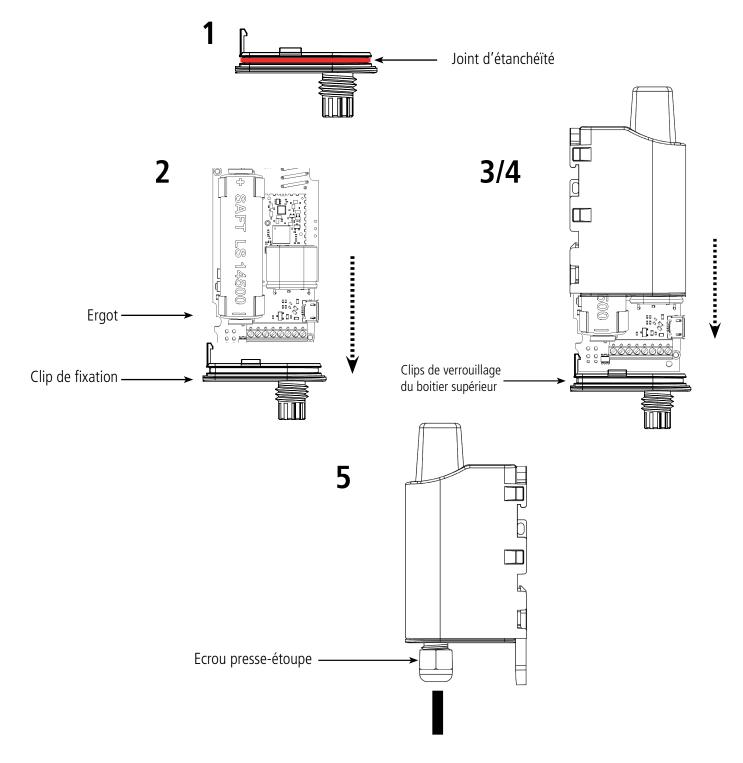
5.4. Câblage des capteurs analogique


Exemple de montage capteur(s) Analogique(s)

Capteur Température + humidité

5.5. Câblage des entrées déclenchement TOR

Le câblage des entrées TOR permet d'effectuer une acquisition sur les voies analogiques et une transmission des données lors d'un évènement sur ces entrées.

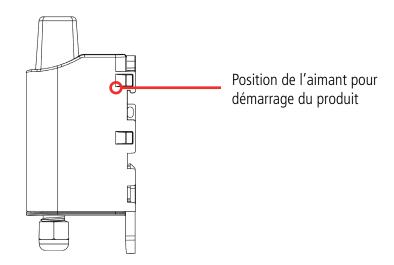


5.6. Fermeture du boîtier

Une fois les étapes précédentes effectuées, vous pouvez fermer le boiter du LoRaWAN ANALOG.

Procédure :

- 1. Assurez-vous que le joint d'étanchéité est bien en place sur la semelle
- 2. Clipser la carte électronique sur la semelle du boîtier. Assurer-vous que le clip de fixation est bien enclenché dans l'ergot de la carte.
- 3. Insérer la partie supérieure du boîtier. À l'intérieur de cette partie se trouvent des rails de guidage de la carte. Veiller à ce que la carte soit bien positionnée à l'intérieur de ces guides.
- 4. Une fois la carte positionnée, abaisser le capot supérieur et venir le verrouiller sur la semelle du boîtier. Une pression forte permet de clipse les deux parties et d'assurer le niveau de protection IP67.
- 5. Finir le montage en verrouillant l'écrou du presse-étoupe.


FR

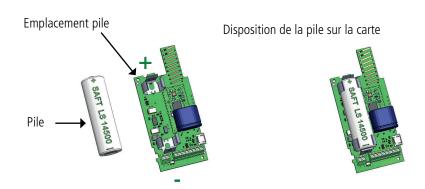
5.7. Démarrage du produit via aimant

Une fois la configuration du produit effectuée et son montage finalisé, le produit est prêt à être démarré.

Le démarrage s'effectue à l'aide d'un aimant que l'on appose sur la partie haute du produit (cf shéma ci-dessous). L'aimant doit être maintenu en position au minimum 6 secondes de sorte à confirmer le démarrage du produit. Lorsque l'aimant est bien détecté, la LED verte s'allume pendant 1 seconde.

Une fois que le LoRaWAN ANALOG valide son démarrage, il émet ses trames de statuts puis, après le temps de la période d'émission défini, une trame de donnée.

5.8. Changement de la pile


Lorsque l'indicateur de batterie faible est activé (indicateur dans la trame ou clignotement de la Led rouge), il est possible de changer la pile interne du boitier.

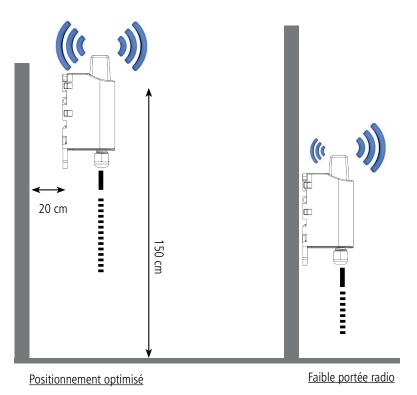
Il est important de conserver la même référence à savoir SAFT LS14500.

Procédure de changement de la pile :

- 1. Suivez les instructions des paragraphes précédents pour l'ouverture du boitier
- 2. Retirez la pile présente et remplacer la par la nouvelle en respectant bien la polarité indiquée sur la carte électronique
- 3. Procédez à la fermeture du boitier
- 4. Redémarrez le produit avec l'aimant comme pour une première mise en marche

Suite à cette procédure le produit va se comporter comme lors d'un premier démarrage.

6. INSTALLATION ET UTILISATION


6.1. Positionnement correct des émetteurs

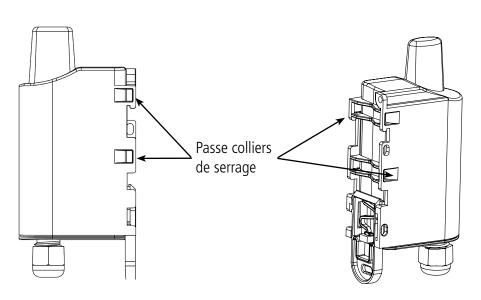
Deux règles sont primordiales pour une optimisation des portées radio.

- La première consiste à positionner votre produit le plus haut possible.
- La deuxième consiste à limiter le nombre d'obstacles pour éviter une trop grande atténuation de l'onde radio.

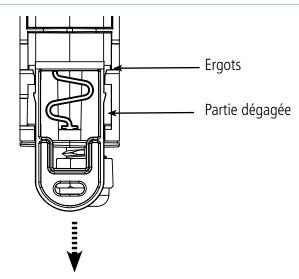
Position : dans la mesure du possible, installer l'émetteur à une hauteur minimale de 1m50 et non collé à la paroi

Obstacles: idéalement le produit doit être décalé de 20 cm d'un obstacle, et si possible près d'une ouverture (plus l'obstacle est proche, plus la puissance émise sera absorbée). Tous les matériaux rencontrés par une onde radio atténueront celle-ci. Retenez que le métal (armoire métallique, poutrelles...) et le béton (béton armé, cloisons, murs...) sont les matériaux les plus critiques pour la propagation des ondes radio.

6.2. Types de fixations


Le produit propose 3 modes de fixation permettant ainsi de nombreuses mises en place en fonction de l'environnement où il doit être déployé.

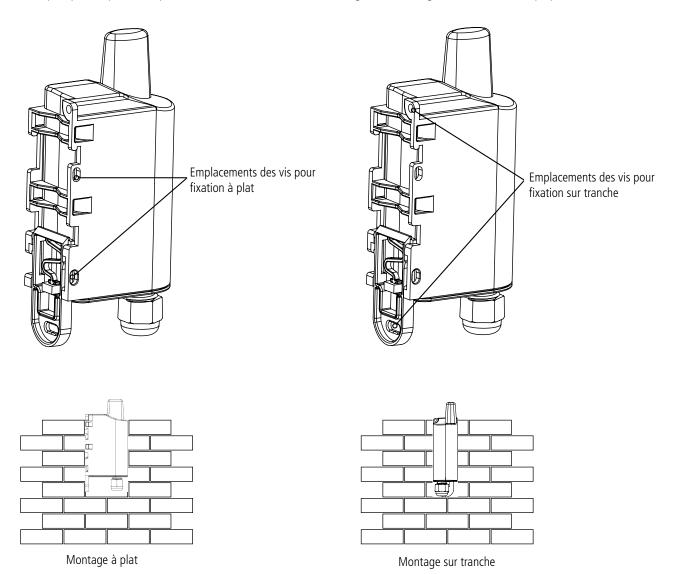
6.2.1 Fixation sur tube ou mât


Comme expliqué à l'étape 4.1, les meilleures performances radio sont obtenues en positionnant le produit le plus haut possible.

Les fixations pour collier de serrage permettent de fixer le produit sur un mât ou un tube en toute sécurité

Pour optimiser la fixation sur tube ou mât, il est recommandé de retirer le levier de verrouillage/déverrouillage Rail-DIN.

Pour retirer celui-ci, tirer vers le bas sur le levier jusqu'à ce que les ergots de blocage soient face à une partie dégagée et retirer le levier

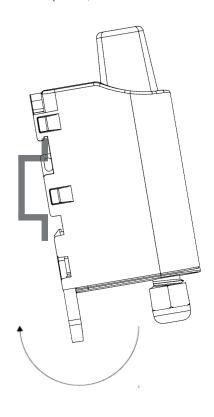


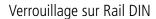
6.2.2 Fixation par vis

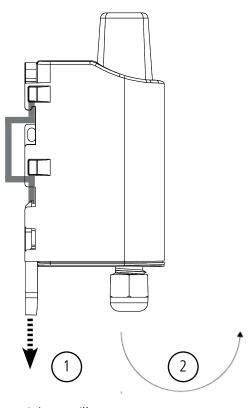
Le produit est livré avec 2 vis CBLZ 2.2 x 19mm et 2 chevilles SX4. Utiliser ces produits ou des produits équivalents pour fixer votre produit à un support plat.

Deux positions peuvent être choisies : à plat ou sur la tranche.

- La position sur la tranche permet d'éloigner le produit de son support et participe donc à une meilleure propagation des ondes radio.
- Si vous optez pour la position à plat, veuillez retirer le levier de verrouillage/déverrouillage Rail-DIN comme expliqué ci-dessus.






6.2.3 Fixation Rail-DIN

Ce système, intégré au boîtier, permet de fixer le produit sur un rail standard de 35mm

- Pour installer le boîtier, placer les inserts supérieurs sur le rail et abaisser le produit pour le clipser
- Pour retirer le produit, tirer le levier de déverrouillage vers le bas et désengager le produit du rail.

Déverrouillage

7. HISTORIQUE DU DOCUMENT

Version	Contenu
V2.0.0	Modifications suite mise à jour RTU & APP
V1.2.0	Mise à jour partie 3
V1.0.1	Mise à jour Déclaration de conformité
V1.0.0	Création

ENGLISH

PRODUCTS AND REGULATORY INFORMATION

Document Information	
Title	LoRaWAN ANALOG - User Guide
Sub-title	
Document type	User Guide
Version	2.0.0

This document applies to the following products :

Nom	Référence	Version firmware
LoRaWAN ANALOG 868 - Replaceable battery	ARF8190BA	Version RTU: V01.04.00
		Version APP : V01.03.04

FRANÇAIS

EU Declaration of Conformity

WE

adeunis 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis.com

Declare that the DoC is issued under our sole responsibility and belongs to the following product:

Apparatus model/Product: ANALOG LoRaWAN

Type: ARF8190AA, ARF8190BA

The object of the declaration described above is in conformity with the relevant Union harmonisation legislation:

Directive 2014/53/UE (RED)

The following harmonised standards and technical specifications have been applied:

 Title:
 Date of standard/specification

 EN 300 220-2 V3.1.1
 2017/02

 EN 301 489-1 V2.1.1
 2016/11

 EN 301 489-3 V2.1.0
 2016/09

 EN 62368-1
 2014

 EN 62311
 2008

Otober, 5th,2017 Monnet Emmanuel, Certification Manager

The state of the s

Préambule / Preamble / Präambel / Preambolo / Preámbulo

- Ce guide décrit les fonctionnalités du produit adeunis®. Il explique les modes de fonctionnement du produit et la manière de le configurer.
- This guide describes the functionalities of the product adeunis®. It explains its functionnments and how to configure it.
- Dieser Leitfaden beschreibt die Funktionalität des Produktes adeunis®. Er erklärt die Betriebsfunktionen des Produktes und die Art und Weise, um es zu konfigurieren.
- Questa guida descrive la funzionalità del prodotto adeunis®. Questo spiega come funziona il prodotto e come configurarlo.
- Esta guía describe las funcionalidades del producto adeunis®. En él se explica los modos de funcionamiento del producto y cómo configurarlo.
- Aucun extrait de ce document ne pourra être reproduit ou transmis (sous format électronique ou papier, ou par photocopie) sans l'accord d'adeunis®. Ce document pourra être modifié sans préavis. Toutes les marques citées dans ce guide font l'objet d'un droit de propriété intellectuelle.
- No part of this document may be reproduced or transmitted (in electronic or paper, or photocopying) without the agreement adeunis®. This document may be changed without notice. All trademarks mentioned in this guide are the subject of intellectual property rights. adeunis®.
- Kein Teil dieses Dokuments darf reproduziert oder übertragen werden (in elektronischer oder Papierform oder Fotokopie) ohne die Zustimmung adeunis®. Dieses Dokument darf ohne vorherige Ankündigung geändert werden. Alle Marken in diesem Handbuch erwähnt werden, sind Gegenstand des geistigen Eigentums.
- Nessuna parte di questo documento può essere riprodotta o trasmessa (in fotocopie elettronico o cartaceo, o), senza il consenso adeunis®. Questo documento può essere modificato senza preavviso. Tutti i marchi citati in questa guida sono oggetto di diritti di proprietà intellettuale.
- Ninguna parte de este documento puede ser reproducida o transmitida (en fotocopias electrónico o en papel,
 o) sin el acuerdo adeunis®. Este documento puede ser modificada sin previo aviso. Todas las marcas comerciales mencionadas en esta quía son el tema de los derechos de propiedad intelectual.

Adeunis 283, rue Louis Néel 38920 Crolles France

Web www.adeunis.com

FΝ

AVERTISSEMENT

Ce document et l'utilisation de toute information qu'il contient, est soumis à l'acceptation des termes et condition adeunis®.

adeunis® ne donne aucune garantie sur l'exactitude ou l'exhaustivité du contenu de ce document et se réserve le droit d'apporter des modifications aux spécifications et descriptions de produit à tout moment sans préavis.

adeunis® se réserve tous les droits sur ce document et les informations qu'il contient. La reproduction, l'utilisation ou la divulgation à des tiers sans autorisation expresse est strictement interdite. Copyright © 2016, adeunis®.

adeunis® est une marque déposée dans les pays de l'UE et autres.

SUPPORT TECHNIQUE

Site web

Notre site Web contient de nombreuses informations utiles : informations sur les produits et accessoires, guide d'utilisation, logiciel de configuration et de documents techniques qui peuvent être accessibles 24h/24.

Contact

INTRODUCTION

l'autorisation écrite du propriétaire) par impression, copie, enregistrement ou par tout autre moyen, la traduction de ce manuel (complète ou partielle) pour toute autre langue, y compris tous les langages de programmation, en utilisant n'importe quel dispositif électrique, mécanique, magnétique, optique, manuel ou autres méthodes, est nterdite.

adeunis® se réserve le droit de modifier les spécifications techniques ou des fonctions de ses produits, ou de cesser a fabrication de l'un de ses produits, ou d'interrompre le support technique de l'un de ses produits, sans aucune notification écrite et demande expresse de ses clients, et de s'assurer que les informations à leur disposition sont ralables.

Les logiciels de configurations et programmes adeunis® sont disponibles gratuitement dans une version non modiiable. adeunis® ne peut accorder aucune garantie, y compris des garanties sur l'adéquation et l'applicabilité à un certain type d'applications. Dans aucun cas le fabricant, ou le distributeur d'un programme adeunis®, ne peut être cenu pour responsable pour tous les dommages éventuels causés par l'utilisation dû dit programme. Les noms des programmes ainsi que tous les droits d'auteur relatifs aux programmes sont la propriété exclusive de adeunis®. Tout transfert, octroi de licences à un tiers, crédit-bail, location, transport, copie, édition, traduction, modification dans un autre langage de programmation ou d'ingénierie inversée (retro-ingénierie) est interdit sans l'autorisation écrite et le consentement de adeunis®.

Adeunis

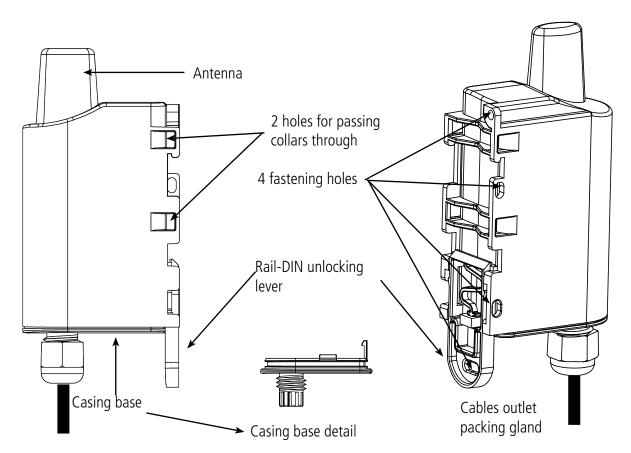
283, rue Louis Néel 38920 Crolles France

1. PRODUCT PRESENTATION

IMPORTANT NOTE: The LoRaWAN ANALOG can only be started with a magnet.

Description:

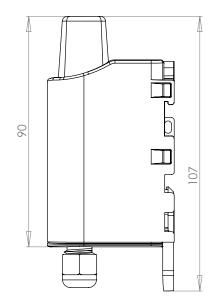
- The adeunis® LoRaWAN ANALOG is a ready-to-use radio transmitter enabling any type of 0-10V or 4-20mA sensor to be converted into a wireless communicating sensor.
- This product meets the needs of users who need to remotely monitor data of any kind (temperature, pressure, level, humidity, CO², speed, brightness, opening, etc.)
- The use of the LoRaWAN protocol allows you to integrate the LoRaWAN ANALOG into any network that is already deployed.
- Two sensors can be supported by a single LoRaWAN ANALOG transmitter.
- The product transmits the data from the sensors either periodically or in an event-related way based on top or bottom thresholds or on detection of a change of state on its digital inputs.
 - The configuration of the transmitter is accessible by the user via a micro-USB port, allowing in particular a choice of modes of transmission, periodicity or type of interface (0-10V or 4-20mA).
 - The LoRaWAN ANALOG is powered by a replaceable internal battery.

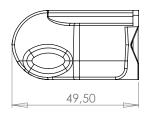

IMPORTANT NOTE 1: The LoRaWAN is delivered by default with OTAA configuration, allowing the user to declare his/her product to a LoRaWAN operator. For an ABP procedure, please contact our Sales Department with the necessary information.

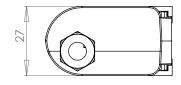
IMPORTANT NOTE 2: The LoRaWAN can transmit measurements from the sensors but does not feed them (except the digital version).

Composition of the package

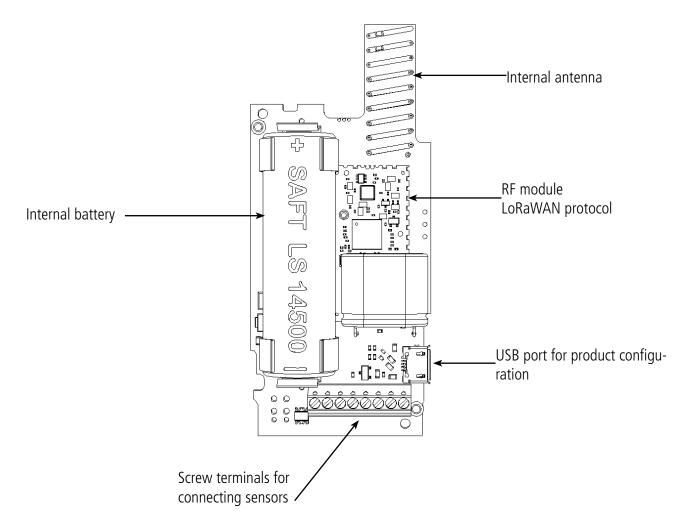
The product is supplied in a cardboard box containing the following items: top casing, electronic card, casing base plate, cable gland, 3 gland seals, 2 CBLZ 2.2 x 19mm screws, 2 Fischer SX4 plugs,


1.1. General description





1.2. Dimensions


Values in millimetres

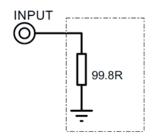
1.3. Electronic board

1.4. Technical Specifications

1.4.1 General characteristics

Parameters	Value
Supply voltage	Nominal 3.6V
Power supply	Removable battery version: SAFT LS14500
Maximum supply	90mA
Working temperature	-25°C / +70°C
Dimensions	105 x 50 x 27mm
Weight	70g
Casing	IP 67
Radio standards	EN 300-220, EN 301-489, EN 60950

1.4.2 Autonomy


Operating conditions:	Sending periodicity	Autonomy SF7	Autonomy SF12
Product shelf life before	140 frames/day	7.5 years	9 month
use: Maximum 1 year.	100 frames/day	8.8 years	1 year
Calculations performed at a temperature of 20°C	50 frames/day	11.3 years	2 years
a temperature or 20°C	20 frames/day	13.6 years	4 years
	10 frames/day	14.6 years	6.5 years
	2 frames/day	15.5 years	12.3 years

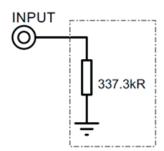
The above values are estimations based on certain conditions of use and environment. They do not represent a commitment on the part of adeunis®.

1.4.3 Physical interface characteristics

1.4.3.01 4-20mA interfaces

The schematic diagram of the 4-20mA interfaces is the following:

Absolute maximum values	Units	
Minimum input current	0	mA
Maximum input current	30	mA

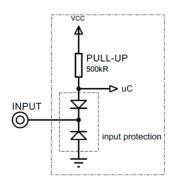

Electrical characteristics		Unité
Minimum input current	4	mA
Maximum input current	20	mA
Equivalent input impedance	99,8 (+/-0,1%)	Ω

12-bit analog input resolution

1.4.3.02 0-10V interfaces

The schematic diagram of the 0-10V interfaces is the following:

Absolute maximum values		Units
Minimum input voltage	0	V
Maximum input voltage	15	V


Electrical characteristics	Units	
Minimum input voltage	0	V
Maximum input voltage	10	V
Equivalent input impedance	337,3 (+/-0,2%)	kΩ

12-bit analog input resolution

Values higher than the absolute maxima would damage the product.

1.4.3.03 Digital interfaces

The schematic diagram of the digital interfaces is the following:

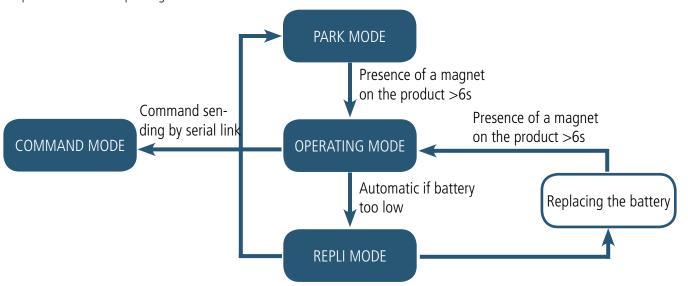
Absolute maximum values		Units
Minimum input voltage	- 0,7	V
Maximum input voltage	+50	V

Electrical characteristics		Units
Minimum input voltage	0	V
Maximum input voltage	24	V
Equivalent input resistance	500	kΩ
Input frequency	10	Hz
High input level current consumption	0	μΑ
Low input level current consumption	6	μА

1.4.4 Sensor compatibility

Examples of sensors tested by adeunis® (non-exhaustive list)

Туре	Name	Туре	Applications
4-20mA	EE80 E+E Electronik	CO2, temperature, relative humidity	Technical management of buildings, air quality, ventilation, etc.
4-20mA	PR791F Asco Instrument	Pressure	Industrial processes, static and dynamic measurements, etc.
0-10V	PF211 Mitchell instruments	Relative humidity	Hvac and regulation of ambient conditions
0-10V	ADT 23-110 MSR Electronic	Nitrogen dioxide NO2	Detecting nitrogen dioxide in underground garages, tunnels, shelters, industrial areas, etc.
TOR	RBWF-LF S+S Regeltechnik	Brightness, movement, presence	Technical management of buildings, presence sensing for lighting control, ventilation, etc.



2. PRODUCT OPERATION

2.1. Global Operation

Important: adeunis® use the most significant byte first format.

The product has several operating modes:

2.1.1 PARK mode

The product is delivered in PARK mode, it is in standby mode and its consumption is minimal. To switch the product out of the Park* Mode pass a magnet across it for a duration higher than 6 seconds. The green LED illuminates to indicate the detection of the magnet and then flashes quickly during the product starting phase.

The device then sends its configuration and data frames (see paragraph 4.1).

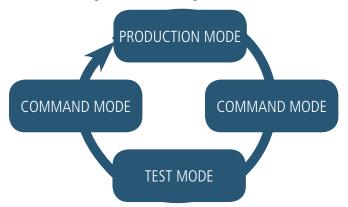
2.1.2 COMMAND mode

This mode allows the user to configure the registers of the product.

To enter this mode, connect a cable to the micro-USB port of the product and enter the command mode by an AT command (see paragraph 3).

2.1.3 OPERATING mode

There are two possible modes of operation:


TEST mode:

This mode allows the user to perform tests of the product more quickly by reducing the time scales of production mode and modifying the behaviour of the LEDs (see paragraph 2.2.5).

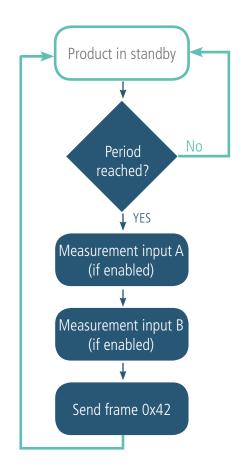
PRODUCTION mode:

This mode allows the user to operate the product in its final use. It should allow a maximum of autonomy to the product.

To switch from one mode to the other the user changes the value of a register

The return to the production mode is done by the ATO command or by disconnecting the USB cable

2.1.4 REPLI mode


The product enters this very low consumption mode following the detection of a level of battery that is too low. In this mode the product wakes up every 5 seconds to make the red LED flash twice.

The replacement of the battery (if the product is a replaceable battery version) followed by the application of the magnet takes the product out of this mode to return it to the operating mode.

2.2. Application operation

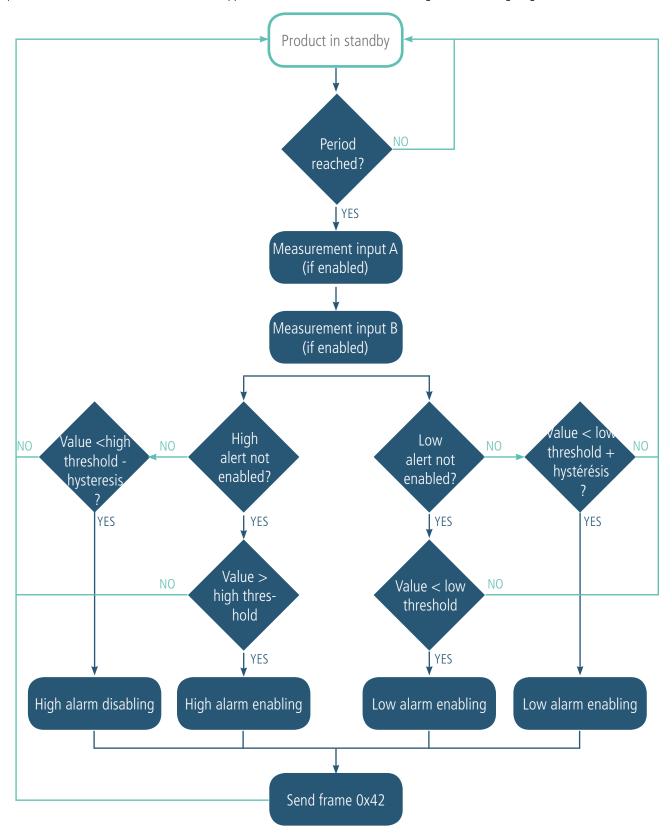
2.2.1 Periodic transmission

The product allows the measurement and the periodic transmission of the values of the sensors according to the following diagram:

The settings associated with this mode of operation are:

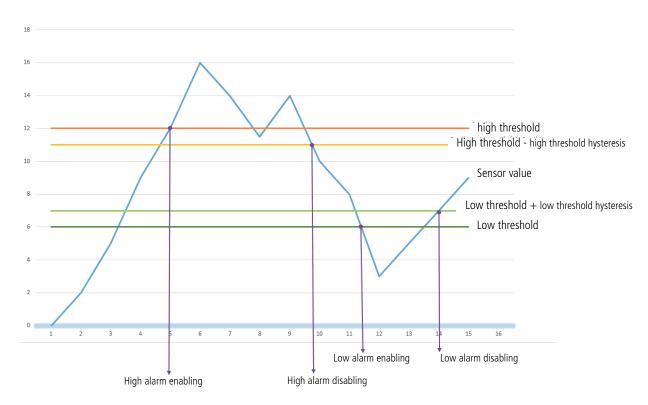
- the transmission period (register 301).
- the presence and type of external sensor (registers 320 and 322).

A complete list of the registers can be found in paragraph 3.4.


<u>Eg:</u>

Registre	Value encoding	Value	Result
S301	Decimal	6	Periodic mode with a period of $6x10min = 60$ minutes
S320	Hexadecimal	0x02	Channel A configured for a sensor 4-20mA
S322	Hexadecimal	0x01	Channel B configured for a sensor 0-10V

2.2.2 Transmission on exceeding of the threshold


The product allows detection threshold overrun (upper and lower) for each sensor according to the following diagram:

Consequently the product sends a frame of data at the threshold overrun and also during a return to normal.

Explanation of thresholds and hysteresis:

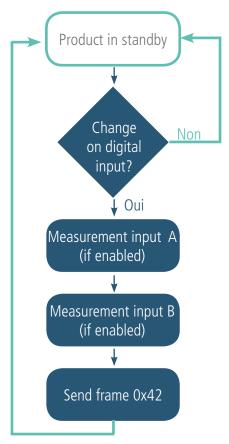
The monitoring period by the sensors is fixed at 10 minutes (to change this value, contact the Technical Support Department).

The settings associated with this mode of operation are:

- The transmission periodicity (zero in this usage situation) (register 301).
- The presence and type of external sensor (registers 320 and 322).
- The configuration of the events (registers 321 and 323).
- The high alarm threshold channel A (register 324).
- The high alarm hysteresis channel A (register 325).
- The low alarm threshold channel A (register 326).
- The low alarm hysteresis channel A (register 327).
- The high alarm threshold channel B (register 328).
- The high alarm hysteresis channel B (register 329).
- The low alarm threshold channel B (register 330).
- The low alarm hysteresis channel B (register 331).

A complete list of the registers can be found in paragraph 3.4.

E.g.:


Register	Value encoding	Value	Result
S301	Decimal	0	Event mode
S320	Hexadecimal	0x02	Channel A configured for a sensor 4-20mA
S322	Hexadecimal	0x01	Channel B configured for a sensor 0-10V
S321	Hexadecimal	0x03	On channel A: Detection of high and low thresholds Detection of event on disabled digital input No waiting period
S323	Hexadecimal	0x02	On channel B: Detection of high thresholds Detection of event on disabled digital input No waiting period

		·	
S324	Decimal	1 200 000	The value of the high threshold of channel A is: 1 200 000x10=12 000 000nA so 12mA
S325	Decimal	100 000	The value of the hysteresis of the high threshold of channel A is: 100 000x10=1 000 000nA so 1mA
S326	Decimal	600 000	The value of the low threshold of channel A is: 600 000x10=6 000 000nA so 6mA
S327	Decimal	100 000	The value of the hysteresis of the low threshold of channel A is: 100 000x10=1 000 000nA soit 1mA
S328	Decimal	8 000 000	LThe value of the high threshold of channel B is: 8 000 000µV so 8V
S329	Decimal	1 000 000	The value of the hysteresis of the high threshold of channel B is: 1 000 000 μ V so 1V
S330	Decimal	3 000 000	The value of the low threshold of channel B is: 3 000 000µV so 3V
S331	Decimal	1 000 000	The value of the hysteresis of the low threshold of channel A is: $1\ 000\ 000\mu V$ so $1V$

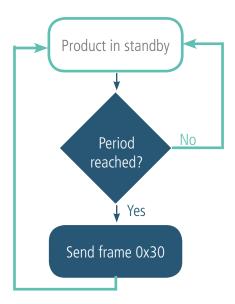
2.2.3 Transmission on event of digital input

The product allows the measurement and the transmission of the values of the sensors following an event on a digital input according to the following diagram:

This triggering can be on the rising edge, falling edge or both. A configurable debounce is present on every digital input. Input TOR1 is associated with channel A and input TOR2 with channel B.

The settings associated with this mode of operation are:

- The transmission periodicity (zero in this usage situation) (register 301)
- The presence and type of external sensor (registers 320 and 322).
- The configuration of the events (registers 321 and 323).


Eg:

Register	Value encoding	Value	Result
S301	Decimal	0	Event mode
S320	Hexadecimal	0x02	Channel A configured for a sensor 4-20mA
S322	Hexadecimal	0x01	Channel B configured for a sensor 0-10V
S321	Hexadecimal	0x1C	Channel A: No threshold detection Event detection on digital input on rising and falling edges • Waiting* period of 10ms
S323	Hexadecimal	0x18	Channel B: No threshold detection Event detection on digital input on rising edge only • Waiting* period of 10ms

^{*} Waiting* period (or debounce time): minimum time for taking into account a change of state. For example if this period is 10ms, all pulses (high or low level) whose duration is less than 10ms will not be taken into account. This technique prevents rebounce on a change of state.

2.2.4 Transmission of a daily Keep Alive frame

In the event mode (threshold or digital), it is possible that the product would never send data frames. So to be sure that it is working properly a Keep Alive frame is transmitted regularly according to the following diagram:

In periodic mode there is no Keep Alive frame transmission.

The settings associated with this mode of operation are:

• The setting of the period of transmission of the Keep Alive frame (once per hour to once per day) (register 300).

A complete list of the registers can be found in paragraph 3.4.

E.g.:

Register	Value encoding	Value	Result
S300	Decimal	72	The Keep Alive frame is sent every: 72x10=720min i.e.
			12h (or twice per day)

2.2.5 TEST Mode

This mode allows the user to perform tests of the product more quickly by reducing the time scales of the production mode and modifying the behaviour of the LEDs.

It is obtained by positioning register S306 at the value 2 in the COMMAND mode. Once out of the command mode, the product returns to the previously defined application behaviour but with the following changes:

- register S300: the periodicity of the Keep Alive frame is expressed in groups of twenty seconds instead of tens of minutes. Hence in test mode when register 300 = 144, the Keep Alive frame is no longer sent every 144x10min=1440 minutes or 24h but every 144x20s=2880 seconds or 48 minutes.
- register S301: the periodicity of the sending of data (periodic mode) is expressed in groups of twenty seconds instead of tens of minutes. Hence in test mode when register 301 = 1, the data frame is no longer sent every 10min but every 20 seconds.
- In the event mode with transmission on threshold overrun the monitoring period of inspection by the sensors, normally 10 minutes is now, in TEST mode, set to 100 seconds.
- -The LEDS also have different behaviour, allowing a visual feedback to the user in the event of transmission and reception of frames (see paragraph 2.3 for more details).

A complete list of the registers can be found in paragraph 3.4.

E.g.:

Register	Value encoding	Value	Result
S306	Decimal	2	The product is in TEST mode
\$300	Decimal	72	The Keep Alive frame is sent every: 72x20=1440s = 24 minutes
S301	Decimal	6	Periodic mode with a period of $6x20 = 120s = 2$ minutes

2.3. Operation of the LEDs

Mode	LED red state	LED green state
Transmission of frame (TEST mode only)		ON during the transmission cycle
Reception of frame (TEST mode only)	ON during the reception of a downlink frame	
Product in Park mode	OFF	OFF
Magnet detection process (1 to 6 seconds)	OFF	ON from detection of the magnet up to a maximum of 1 second
Product start (after detection of the magnet)	OFF	Rapid flashing 6 cycles, 100 ms ON / 100 ms OFF
Joining process (Lora product)	During the JOIN phase: flashing: 50ms on / 1 s off	During the JOIN phase: flashing: 50ms on / 1 s off (just after the red LED)
	If the JOIN phase is complete (JOIN accept): flashing: 50ms on / 50ms Off (6x)	If JOIN phase is complete (JOIN accept): flashing: 50ms on / 50ms off (just before the red LED)
Switching to the Command mode	Continuously lit	Continuously lit
Battery level low	Flashing (0.5s ON every 60s)	
Product faulty (return to factory)	Fixed ON	
Product in production mode (TEST mode only)	50ms ON / 50 s OFF	50ms ON / 50 s OFF (just before the red LED)
Product in REPLI mode	Flashing (100ms ON / 100ms OFF) x 2 every 5s	

3. DEVICE CONFIGURATION

The device can be configured using the USB connector. This connection allows you to communicate with the device via a virtual com port and to transmit AT commands in order to modify the parameters of the device.

WARNING: the USB connection does not supply power to the product, it induces a consumption of the product as long as the one is connected. It is therefore important not to leave the product connected too long.

3.1. Connecting the device to a computer

Connect the product to the USB input of a computer. The product has a Type B micro USB connector. During connection, the device must be recognised by the computer as a Virtual Com Port (VCP) device.

Using Windows: Verification that the device has been recognised to be functioning properly can be obtained by consulting the device manager. You should see the USB series device with a corresponding COM port number appear during connection.

If you are not able to see a device of this type, you must install the USB driver for this device, available to download from our website: https://www.adeunis.com/produit/analog/

Select:

- Driver USB-STM32_x64, if your computer is a 64 bits system
- Driver USB-STM32, if your computer is a32 bits system

3.2. Command mode

Use a COM port terminal in order to communicate with the device. We use the HERCULES COM port soft terminal available to download for free by clicking on the following link: http://www.hw-group.com/devices/hercules/index_en.html

• With Hercules, select the "Serial" tab, then configure the serial port with the following serial parameters:

Parameters	Value
Rate	115 200 bps
Parity	None
Data	8
Stop Bit	1

- Select the serial port on which the device has been created with Windows (Name).
- Click on the "Open" button to open the serial port.

NOTE INFORMATION: If the comport has been opened correctly, Hercules will display the message "Serial COM3 port opened".

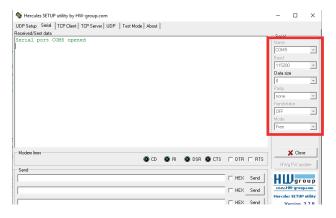
Alternatively, "Serial port com opening error" will be displayed, meaning either that the com port is already open for another application, or it does not exist.

You must send a specific frame in order to move the device to configuration mode.

Frame expressed in hexadecimals: 0x2B 0x2B 0x2B or « +++ ».

For Hercules, this frame must be entered in one of the 3 lines available at the bottom. The hexadecimal format must be expressed using a "\$" in this program, which gives us the following frame: \$2B\$2B\$2B.

Send the transition frame in command mode in order to switch the device to configuration mode by clicking on the SEND button.


After a few seconds, You must see the 2 LEDs light up permanently.

On the comport terminal, you should also have «CONNECTING...» and « CM » feedback for Command Mode.

Sending a character on Hercules is displayed in magenta and receiving a character is displayed in black. If you do not see sending characters, this is probably because ECHO is not active on this program. To activate the option in the accessible menu, right click in the viewing window.

3.3. AT commands

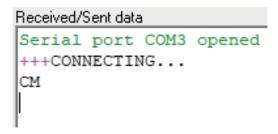
A command starts with 2 ASCII characters: "AT", followed by one or more characters and data (see the list below for the syntax of AT com-

mands available on the modem).

Each command must finish with a "CR" or "CR" "LF" – both are acceptable.

(CR indicates: Carriage Return, LF indicates: Line Feed)

Once the command has been received, the modem will feedback:



<cr><lf> "Data" for ATS type playback control <n> ?, AT/S or AT/V

[&]quot;O" <cr><lf>, for any other command when this has been accepted.

Table of AT commands:

[&]quot;E" <cr><lf>, if it refuses the command due to a syntax error, unknown command, unknown range, invalid parameter, etc.

[&]quot;CM" <cr><lf>, if it accepts the input in command mode

Command	Description	Reply example		
+++	Input request in command mode	CONNECTING <cr><lf>CM<cr><lf></lf></cr></lf></cr>		
ATPIN <pin></pin>	Gives access to AT commands if register S304 is different of 0			
AT/V Feeds back the version of the APPLICATIF and RTU software		APP_8230EAA_PRG1706_V01.02.02:RTU_RTU_WM-BUS_868_PRG_1601_V00.00.03 Or APP_8181AAA_PRG1701_V01.00.02:RTU_8120AAB_PRG_1701_V01.00.01		
AT/N	Feeds back the type of network	"LoRa" or "SIGFOX" or « WMBUS »		
ATS <n>?</n>	Feeds back the content of the n range	Sn=y where y represents the content of the n range		
AT/S	Edits the content of all of the user ranges in the form of a list.	1		
ATS <n>=<m></m></n>	Transfers the m value to the n range	«O» <cr><lf> if Ok, «E»<cr><lf> if error, «W»<cr><lf> if coherency error</lf></cr></lf></cr></lf></cr>		
AT&W	Saves the current configuration to non-volatile memory.	«O» <cr><lf>, «W»<cr><lf> if coherency error</lf></cr></lf></cr>		
ATO	Exit command mode	«O» <cr><lf>, «W»<cr><lf> if coherency error</lf></cr></lf></cr>		
ATT63 PROVIDER	Unblock the operating range	«O» <cr><lf></lf></cr>		

Example of a set of commands and corresponding responses that can be seen on the terminal:

Syntax of the order	Description	Response Syntax to Next Line
+++	Input request in command mode	CONNECTING CM
ATS221=1	Request to switch to activation OTAA mode	0
ATS214=0018B200	Change APP_EUI MSB	E -> This command is not validated (register no unlocked)
ATT63 PROVIDER	Unblock the operating range	0
ATS214=0018B200	Change APP_EUI MSB	0
ATS215?	Feeds back the value of the S215 range	S200=44512451
AT&W	Memory request for the state range	0
ATO	Output request in command mode	0

Interpreting the previous example: the user wanted to modify the beginning of the APP_EUI after having made an unauthorised command (answer E), and the ranges were unblocked in order to modify the range. The second part of the APP_EUI was verified and the parameters were saved before exiting. When exiting command mode, the device will start a JOIN demand.

3.4. Description of the registers

On switching on the product works according to the last saved configuration (Factory Configuration if it is the first start, or if this configuration has not been changed). Commands such as Modification TTY<n>=<M> or ATR allow you to change the content of the registers: <n> representing the number of the register and <m> the value to be assigned. This latter is either a decimal value or a hexadecimal value consistent with the «encoding» column of the tables below.

Examples:

- ATS300=6 assigns the decimal value 6 in register 300
- ATS320=2 assigns the hexadecimal value 0x02 in register 320

It is imperative to save the parameters with the command AT&W before exiting the Command mode otherwise all changes will be lost.

IMPORTANT: The registers that are not documented (that can appear in the list following the AT/S command) in the paragraphs that follow are reserved and must not be changed.

3.4.1 Function registers

The list of registers below allows you to change the behaviour of the product application.

Register	Size (bytes)	Description	Coding	Details
300	1	Transmission period of the Keep Alive frame	Decimal	Default: 144 Min/max: 1 to 255 Units: X 10min if S306=1 X 20s if S306=2
301	Transmission period of data sensors		Decimal	Default: 1 Min/max: 0 to 255 Units: X 10min if S306=1 X 20s if S306=2 The value 0 means no periodic sending, therefore event operation
303 1 Confirmed mode activation			Decimal	Default : 0 (desactivated) Values : 0 (desactivated) à 1 (activated)
304	2	PIN Code	Decimal	Default: 0 (disabled) Min/max: 0 to 9999 PIN code used with ATPIN command. Value 0 disables the PIN code. IMPORTANT: The product does not have a mechanism to unlock the PIN code if it is activated and the code is forgotten.
306	1	Global operation	Decimal	Default: 0 Allows the product to be switched into one of the following modes: • 0: PARK* mode • 1: PRODUCTION mode • 2: TEST mode • 3: REPLI mode
320	1	Configuration of the channel A sensor	Hexadecimal	Default: 0x00 Bits 0 à 3: Type • 0 = none • 1 = 0-10 V • 2 = 4-20 mA Bits 4 to 7: Identifier (free to use) WARNING: if none of the channels (A et B) is configured (value = None), the product will send the configuration frame 0x10 periodically (period defined by register 300)

321	1	Configuration of the event behaviour of channel A	Hexadecimal	Default 0x10 Bits 0 à 1 : Threshold triggering • 0 = None • 1 = Low only • 2 = High only • 3 = Low and High Bits 2 to 3: Trigger by digital input • 0 = Disabled • 1 = Rising edge • 2 = Falling edge • 3 = Rising and falling edges Bits 4 to 7: Duration of the waiting period • 0 : Aucune • 1 : 10 ms • 9 : 5 s • 4 : 10 s			
				• 3 : 50 ms • 4 : 100 ms • 5 : 200 ms • 6 : 500 ms • 7 : 1 s • A : 10 3 • B : 20 s • C : 40 s • D : 60 s • E : 5 minutes			
322	1	Configuration of the channel B sensor	Hexadecimal	See details of register 320			
323	1	Configuration of the event behaviour of channel A	Hexadecimal	See details of register 321			
324	4	High threshold value channel A	Decimal	Default: 0 For a 4-20mA sensor: • Unit: x 10nA • Min/Max values: 400,000 to 2,000,000: E.g.: If S324=1,100,000, the high threshold will have a value of 11,000,00X10=11,000,000nA i.e.11mA For a 0-10V sensor: • Unit: x 1µV • Min/Max values: 0 to 10,000,000: E.g.: If S324=9,000,000, the high threshold will have a value of 9,000,000,000, the high threshold will have			
325	4	Value of the high threshold hysteresis of channel A:	Decimal	a value of 9,000,000µV i.e. 9V Default: 0 For a 4-20mA sensor: • Unit: x 10nA • Min/Max values: 0 à 1 600 000 E.g.: if S325=100 000, the value of the high threshold hysteresis will be 100000x10=1 000 000nA soit 1mA Pour un capteur 0-10V: • Unité: x 1µV • Valeurs Min/Max: 0 à 10 000 000			
326	4	Low threshold value channel A	Decimal	Default: 0 For a 4-20mA sensor: • Unit: x 10nA • Min/Max values: 400 000 à 2 000 000 E.g.: if S326=600 000, the low threshold will have value of 600000x10=6 000 000nA i.e. 6mA For a 0-10V sensor: • Unit: x 1µV • Min/Max values: 0 à 10 000 000 E.g.: if S326=1 000 000, the high threshold will had a value of 1 000 000µV i.e. 1V			

327	4	Value of the low threshold hysteresis of channel A:	Decimal	Default: 0 For a 4-20mA sensor: • Units: x 10nA • Min/Max values: 0 à 1 600 000 E.g.: if S327=200 000, the value of the low threshold hysteresis will be 200000x10=2 000 000nA i.e.2mA For a 0-10V sensor: • Unit: x 1µV • Min/Max values: 0 à 10 000 000 E.g.: if S327=3 000 000, the value of the low threshold hysteresis will be 3 000 000µV i.e. 3V
328	4	High threshold value channel B	Decimal	See details of register 324
329	4	Value of the high threshold hysteresis of channel B:	Decimal	See details of register 325
330	4	Low threshold value channel B	Decimal	See details of register 326
Value of the low threshold hysteresis of channel B:		Value of the low threshold hysteresis of channel B:	Decimal	See details of register 327

3.4.2 Network registers

The list of registers below allows you to change the behaviour of the product application. This list is accessible in Provider mode following execution of the ATT63 Provider command.

These registers must be handled with caution because they could cause problems of communication or of non-compliance with the legislation in force.

Register	Description	Coding	Details
201	Spreading Factor (SF) by default	Decimal	Default: 12 (868) or 10 (915) depending on the reference of the product Min/max: 4 to 12 Unit: None
214	LORA APP-EUI (first part – MSB)	Hexadecimal	Default: 0
215	LORA APP-EUI (second part – LSB)	Hexadecimal	Key encoded on 16 characters. Each register contains a part of the key. Used during the join phase in OTAA mode E.g.: APP-EUI = 0018B244 41524632 • S214 = 0018B244 • S215 = 41524632
216	LORA APP-KEY (first part— MSB)	Hexadecimal	Default: 0
217	LORA APP-KEY (second part – MID MSB)	Hexadecimal	Key encoded on 32 byte characters. Each of the 4
218	LORA APP-KEY (third part – MID LSB)	Hexadecimal	registers contains 8 characters. Used during the join phase in OTAA mode
219	LORA APP-KEY (fourth part – LSB)	Hexadecimal	E.g.: APP-KEY = 0018B244 41524632 0018B200 00000912 • \$216 = 0018B244 • \$217 = 41524632 • \$218 = 0018B200 • \$219 = 00000912

220	LoRaWAN Options	Hexadecimal	Default: 5 Bit 0: Activation of the ADR ON(1)/OFF(0) Bit 1: Reserved Bit 2: DUTYCYCLE ON(1)/DUTYCYCLE OFF(0) Bit 3 to 7: Reserved WARNING: Deactivation of the Duty Cycle may result in a violation of the conditions of use of the frequency band, depending on the use of the product, thus violating the regulations in force. In the case of disabling the Duty Cycle, the responsibility is transferred to the user.
221	Mode of activation	Decimal	Défaut : 1 Choice: (see NOTE1 after the board) • 0 : ABP • 1: OTAA
222	LORA NWK_SKEY (first part – MSB)	Hexadecimal	Default: 0
223	LORA NWK_SKEY (second part - MID MSB)	Hexadecimal	Parameter encoded on 16 bytes. Each of the 4 registers
224	LORA NWK_SKEY (third part - MID LSB)	Hexadecimal	contains 4 bytes.
225	LORA NWK_SKEY (fourth part – LSB)	Hexadecimal	
226	LORA APP_SKEY (first part – MSB)	Hexadecimal	Default: 0
227	LORA APP_SKEY (second part - MID MSB)	Hexadecimal	Parameter encoded on 16 bytes. Each of the 4 registers
228	LORA APP_SKEY (third part - MID LSB)	Hexadecimal	contains 4 bytes.
229	LORA APP_SKEY (fourth part – LSB)	Hexadecimal	
250	Configuration Canal 0	Decimal (868) Hexadecimal (915)	Default: 1 Obligatory LoRaWAN operating channel Do not change this value
251	Configuration Canal 1	Decimal (868) Hexadecimal (915)	Default: 1 (868) ; 0 (915) Obligatory LoRaWAN operating channel Do not change this value
252	Configuration Canal 2	Decimal (868) Hexadecimal (915)	Default: 1 Obligatory LoRaWAN operating channel Do not change this value
253	Configuration Canal 3	Decimal (868) Hexadecimal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
254	Configuration Canal 4	Decimal (868) Hexadecimal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
255	Configuration Canal 5	Decimal (868) Hexadecimal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)
256	Configuration Canal 6	Decimal (868) Hexadecimal (915)	Default: 0 (868); 1 (915) 0: Channel disabled Other: User configuration (Note2)

257	Configuration RX2	Decimal (868) Hexadecimal (915)	Default : 1 0 : Channel disabled 1 : Default configuration: LoRaWAN Autre : User configuration
258	Type of tape (only in 915)	Decimal	Default: 3 Min/max: 0 to 3
280	NETWORK ID	Hexadecimal	Default: 0 Lecture seule
281	DEVICE ADDRESS	Hexadecimal	Default: 0

NOTE 1:

The «Over The Air Activation» (OTAA) mode uses a join phase before being able to transmit on the network. This mode uses the APP_EUI (S214 and S215) and APP_KEY (S216 to S219) codes during this phase to create the keys for network communication.

Once this phase is completed, the codes APP_sKEY, NWK_sKEY and Device address will be present in the corresponding registers.

A new join phase is started every time the product comes out of Command mode, a reset is performed or the product is turned on.

Codes:

- APP_EUI identifier for global use (provided by default by adeunis®)
- APP_KEY device application key (provided by default by adeunis®)

The «Activation by personalization» (ABP) mode has no join phase; it transmits directly on the network using the codes NWK_sKEY (S222 to S225), APP_sKEY (S226 to S229) and Device address (S281) to communicate.

Codes:

- NWK_sKEY network session key (provided by default by adeunis®)
- APP_sKEY applicative session key (provided by default by adeunis®)
- DEVICE ADDRESS Address of the device in the network (provided by default by adeunis®)

NOTE 2:

By default, channels 0 to 2 use the default settings of the LoRaWAN network; the other 4 channels are inactive. A register value different from 0 or 1 allows the channel to be configured as follows:

Bit	7	6	5	4	3	2	1	0
Description		Channel frequency						
Example		868100						3

Data Rate value (DR)	Description
0	SF12
1	SF11
2	SF10
3	SF9
4	SF8
5	SF7
6	SF7 – BW 250kHz
7	FSK 50 kps

The example given allows the user to configure a frequency of 868.1 Hz and authorizes a SF 7 to 9. The command to be sent to perform this operation is:

4. DESCRIPTION OF THE FRAMES

4.1. Uplink frames

All of the uplink frames of the product to the network (uplink) always have a size of 11 bytes.

4.1.1 Fixed bytes

The first two bytes of the frame are systematically dedicated to indicate the frame code and the status as presented below:

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							

4.1.1.01 Byte code

This byte contains the code associated with the frame to facilitate its decoding by the data system.

4.1.1.02 Status Byte

The status byte is broken down in the following way:

Alarm Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Frame Counter			Reserved	Reserved	HW	Low Bat	Config
No Error				Х	Х	0	0	0
Configuration done		0x00 to 0x07		Х	Х	0	0	1
Low bat				Х	Х	0	1	0
HW Error				Х	Х	1	0	0

Details of the fields:

- Frame counter: Frame counter, it increments at each transmission and allows the user to see quickly if a frame has been lost. It counts from 0 to 7 before looping back.
- HW: This bit is set to 1 when a hardware error has occurred, for example a writing problem in the EEPROM, a reading problem on the ADC, etc. The product must be returned to the service dept.
- Low Bat: bit at 1 if the battery voltage is less than 2.5V, otherwise 0. This information remains permanent.
- Confg: bit at 1 if a confguration was carried out during the last downlink frame, otherwise 0. This bit returns to 0 as from the next frame.

E.g.:

A value of the status byte equal to 0xA2 (= 10100010 in binary) gives:

- Bit 7 at 5 = 101 = 0x05 i.e. a frame counter at 5
- Bit 4 at 0 = 00010 in binary i.e. a low battery alarm

4.1.2 Product configuration information frames

During the passage into operation mode (from the Park or Command Mode), the following frames (0x10 to 0x14) representing the application configuration of the product are transmitted:

0	1	2	3	4	5	6	7	8	9	10
Code	Status	PAYLOAD								
0x10	Cf Status	S300	S301	S320	S321	S322	S323	S306	Х	Χ
0x10	0x42	0x48	0x00	0x02	0x03	0x01	0x02	0x01		

Description of the frame:

- Byte 2: register 300, periodicity of the Keep Alive frame, expressed in tens of minutes
- Byte 3: register 301, periodicity of the transmission, expressed in tens of minutes
- Byte 4: register 320, configuration of the channel A sensor
- Byte 5: register 321, configuration of the events on channel A

- Byte 6: register 322, configuration of the channel B sensor
- Byte 7: register 323, configuration of the events on channel B
- Byte 8: register 306, product mode (Park, Standard (production), Test or REPLI)

In the example in grey this gives:

- Byte 2=0x48: register 300, Keep Alive frame issued every 12 hours
- Byte 3=0x00: register 301, event mode
- Byte 4=0x02: register 320, channel A configured for a 4-20mA sensor
- Byte 5=0x03: register 321:
- o Detection of high and low thresholds on channel A
- o Detection of event on disabled digital input
- o No waiting period
- Byte 6=0x01: register 322, channel B configured for a 0-10V sensor
- Byte 7=0x02: register 323:
- o Detection of high and low thresholds only
- o Detection of event disabled digital input
- o No waiting period
- Byte 8=0x01: register 306, Production mode in progress

WARNING: if none of the channels is configured (value = None in registers 320 and 322), the product will send the configuration frame 0x10 periodically (period defined by register 300)

0	1	2	3	4	5	6	7	8	9	10
Code	Status	PAYLOAD								
0x11	Cf Status		S324			S325		Χ	Х	Χ
0x11	0x42		0x124F80			0x0186A0				

Description of the frame:

- Bytes 2 to 4: register 324, high threshold of channel A sensor
- Bytes 5 to 7: register 325, high hysteresis of channel A sensor

In the example in grey this gives:

- Bytes 2 to 4=0x124F80=1,200,000 in decimal: register 324, the value of the high threshold for channel A is: 1,200,000x10=12,000,000nA i.e.12mA
- Bytes 5 to 7=0x0186A0=100,000 in decimal: register 325, the value of the high hysteresis for channel A is: 100,000x10=1,000,000nA i.e. 1mA

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							
0x12	Cf Status	S326				S327		Х	Χ	Χ
0x12	0x42	0x0927C0			0x0186A0					

Description of the frame:

- Bytes 2 to 4: register 326, low threshold of the channel A sensor
- Bytes 5 to 7: register 327, low hysteresis of the channel A sensor

In the example in grey this gives:

- Bytes 2 to 4=0x0927C0=600,000 in decimal: register 326, the value of the low threshold for channel A is: 600,000x10=6,000,000nA i.e. 6mA
- Bytes 5 to 7=0x0186A0=100,000 in decimal: register 327, the value of the low hysteresis for channel A is: 100,000x10=1,000,000nA i.e. 1mA

0	1	2	3	4	5	6	7	8	9	10
Code	Status		PAYLOAD							
0x13	Cf Status		S328			S329		Х	Х	Х
0x13	0x42		0x7A1200			0x0F4240				

Description of the frame:

- Bytes 2 to 4: register 328, high threshold of channel B sensor
- Bytes 5 to 7: register 329, high hysteresis of channel B sensor

In the example in grey this gives:

- Bytes 2 to 4=0x7A1200=8,000,000 in decimal: register 328, the value of the high threshold for channel B is: 8,000,000 μV i.e. 8V
- Bytes 5 to 7=0x0F4240=100,000 in decimal: register 329, the value of the high hysteresis for channel B is: 1,000,000µV i.e. 1V

0	1	2	3	4	5	6	7	8	9	10	
Code	Status		PAYLOAD								
0x14	Cf Status		\$330			S331		Χ	Х	Х	
0x14	0x42		0x2DC6C0			0x0F4240					

Description of the frame:

- Bytes 2 to 4: register 330, low threshold of channel B sensor
- Bytes 5 to 7: register 331, low hysteresis of channel B sensor

In the example in grey this gives:

- Octets 2 à 4=0x2DC6C0=3 000 000 en décimal : registre 330, la valeur du seuil bas pour la voie B est : 3 000 000 μV soit 3V
- Octets 5 à 7=0x0F4240=1 000 000 en décimal : registre 331, la valeur de l'hystérésis bas pour la voie B est : 1 000 000μV soit 1V

4.1.3 Network configuration information frame

During the passage into operation mode (from the Park or Command Mode), the following frame (0x20) representing the network configuration of the product is transmitted:

0	1	2	3	4	5	6	7	8	9	10
Code	Status					PAYLOAD				
0x20	Cf Status	ADR	MODE	Х	Х	Х	Х	Х	Х	Х
0x20	0x42	0x01	0x01							

Description of the frame:

- Byte 2: activation of the Adaptive Data Rate: ON (value = 1) or OFF (value = 0)
- Byte 3: connection mode: ABP (value = 0) or OTAA (value = 1)

In the example in grey this gives:

- Byte 2=0x01: The Adaptive Data Rate is enabled
- Byte 3=0x01: OTAA connection mode

4.1.4 Keep Alive frame

This frame (0x30) is transmitted only in the event mode at the frequency defined by register 300.

0	1	2	3	4	5	6	7	8	9	10	
Code	Status		PAYLOAD								
0x30	Cf Status	Sensor type	Value read	Value read on the channel A sensor			Value read	on the chanr	nel B sensor	Х	
0x30	0x42	0x01		0x0C3500		0x01		0x4C4B40			

Description of the frame:

- Byte 2: Type of the sensor on channel A. Configured by the user (register 320).
- Bytes 3 to 5: Value measured on channel A.
- \bullet If the type of sensor is 0-10V: The value is expressed in μV
- If the type of sensor is 4-20mA: The value is expressed in nA
- Byte 6: Type of the sensor on channel B. Configured by the user (register 322).
- \bullet If the type of sensor is 0-10V: The value is expressed in μV

- If the type of sensor is 4-20mA: The value is expressed in nA
- Bytes 7 to 9: Value measured on channel B.

In the example in grey this gives:

- Byte 2=0x02: register 320, channel A configured for a 4-20mA sensor
- Bytes 3 to 5=0x0C3500=800,000 in decimal i.e. A value measured on channel A of: 800,000,x10=8,000,000nA i.e. 8mA
- Byte 6=0x01: register 322, channel B configured for a 0-10V sensor
- Bytes 7 to 9=0x4C4B40=5,000,000 in decimal i.e. a value measured on channel B of: 5,000,000 μV i.e. 5V

4.1.5 Reply frame to a register value request in a downlink frame

Following reception of a downlink frame with the code 0x40, the frame 0x31 is transmitted. It contains all the values of the registers requested in the downlinl frame 0x40.

• Frame (0x40) sent to the product (downlink) :

0	1	2	3	4	5		n
Code				PAYLOAD			
0x40	CONFID1	CONFID2	CONFID3	Х	Х	Χ	CONFIDn

The CONFIDX (8bits) fields represent the indices of the registers to be sent. The corresponding register is 300 + CONFIDX value.

• Response frame (0x31) from the product:

0	1	2	3	4	5		11			
Code	Status		PAYLOAD							
0x31	Cf. Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	Χ			

In this example: CONFID1 is a 2-byte register, CONFID2 a 1-byte register and CONFID3 a 2-byte register. If an error is detected in the request, the returned 0x31 frame will be empty.

4.1.6 Data Frame

This frame (0x42) contains the values measured on the different sensors

0	1	2	3	4	5	6	7	8	9	10	
Code	Status		PAYLOAD								
0x42	Cf Status	S320	Value read on the channel A sensor			S322	Value read	on the chann	el B sensor	Х	
0x42	0x42	0x02	0x0C3500			0x01	0x4C4B40				

Description de la trame :

- Byte 2: Type of the sensor on channel A. Configured by the user (register 320).
- Bytes 3 to 5: Value measured on channel A.
- \bullet If the type of sensor is 0-10V: The value is expressed in μV
- If the type of sensor is 4-20mA: The value is expressed in nA
- Byte 6: Type of the sensor on channel B. Configured by the user (register 322).
- Bytes 7 to 9: Value measured on channel B.
- \bullet If the type of sensor is 0-10V: The value is expressed in μV
- If the type of sensor is 4-20mA: The value is expressed in nA

In the example in grey this gives:

- Byte 2=0x02: register 320, channel A configured for a 4-20mA sensor
- Bytes 3 to 5=0x0C3500=800,000 in decimal i.e. A value measured on channel A of: 800,000,x10=8,000,000nA i.e. 8mA
- Byte 6=0x01: register 322, channel B configured for a 0-10V sensor
- Bytes 7 to 9=0x4C4B40=5,000,000 in decimal i.e. a value measured on channel B of: 5,000,000 μV i.e. 5V

4.1.7 Summary of the conditions of the transmission of the uplink frames

The table below summarizes the conditions of the transmission of the different uplink frames:

Code	Description	Sending conditions
0x10 0x11 0x12 0x13 0x14	Product configuration data frames	 Start-up of the product Exit from the configuration mode (AT Command) Reception of a downlink frame 0x01 Periodically if the inputs are disabled (period defined by the register 300)
0x20	Frames of information on the network configuration	 Start-up of the product Exit from the configuration mode (AT Command) Reception of a downlink frame 0x02
0x30	Keep Alive frame	Periodically in «event» mode
0x31	Reply frame to a register value request in a downlink frame	Reception of a downlink frame 0x40
0x42	Data Frame	 Start-up of the product Event on an digital input configured in event mode Passing a threshold (event mode) The end of the period on input configured in periodic mode

4.2. Downlink frames

LoRaWAN technology makes it possible to transmit information to the product from the network (downlink frame).

The class A of the LoRaWAN specification allows the product to receive information from the network by proposing two listening windows after each uplink communication (uplink frame).

4.2.1 Product configuration request frame

This frame allows us to inform the product via the network that it must resend the product configuration uplink frame (0x10).

	0	1	2	3	4	5	6	7				
	Code		PAYLOAD									
ſ	0x01	Х	Х	Х	Х	Х	Х	Χ				

4.2.2 Network configuration request frame

This frame allows us to inform the product via the network that it must resend the network configuration uplink frame (0x20).

0	1	2	3	4	5	6	7				
Code		PAYLOAD									
0x02	X	X	X	X	X	X	X				

4.2.3 Specific register value request frame

This frame (0x40) allows to inform the product via the network that it must send the values of specific registers in a uplink frame (0x31).

0	1	2	3	4	5		n
Code	PAYLOAD						
0x40	CONFID1	CONFID2	CONFID3	Х	Χ	Χ	CONFIDn

Description of the frame:

 Bytes 1 to N: CONFIDX (8bits): indice of the register to be sent. The corresponding register is 300 + CONFIDX value. For example, if CONFID1 = 20, the product will send back the value of register number 320.

The associated uplink frame has the code 0x31 (see paragraphe 4.1.5).

0	1	2	3	4	5		11
Code	PAYLOAD						
0x31	Status	VALUE1	VALUE1	VALUE2	VALUE3	VALUE3	Х

In this example: CONFID1 is a 2-byte register, CONFID2 a 1-byte register and CONFID3 a 2-byte register. If an error is detected in the request, the returned 0x31 frame will be empty.

IMPORTANT: The user can specify several CONFIDs in his downlink frame but it is his responsibility to verify that according to the protocol the size of the data available in a downlink frame will be large enough to contain all the desired data. Otherwise, the application will only send the first values.

4.2.4 Frame for updating the value of specific registers

This frame (0x41) allows to change the value of requested registers.

0	1	2	3	4	5		n
Code	PAYLOAD						
0x41	CONFID1	CONFID1 value	CONFID2	CONFID2 value (MSB)	CONFID2 value (LSB)		CONFIDn value

Description of the frame:

- Byte 1: CONFID1 (8bits): indice of the first register to change. The corresponding register is 300 + value of CONFIDX. For example, if CONFID1 = 20, the product will change the value of register number 320.
- Byte 2: value to assign to CONFID1: in this example, its value has a size of 1 byte
- Byte 3: CONFID2 (8bits): indice of the second register to change. The corresponding register is 300 + value of CONFIDX.
- Bytes 4 and 5: value to assign to CONFID2: in this example, its value has a size of 2 bytes
- ..

The product does not return any uplink frame following the reception of a downlink frame 0x41. However, the Config bit of the status byte (see section 4.1.1.2) will be set to 1 in the next scheduled uplink frame (periodic or alarm or keep alive frame) if all was well done.

IMPORTANT: the value 0xFF for a CONFIDX will stop the reading of the downlink frame. Only the bytes preceding this value 0xFF will be taken into account. This mechanism can be useful when you need to work in fixed downlink frame lengths and you do not want to use all available bytes.

5. PREPARATION AND CONFIGURATIONS

5.1. Disassembling the casing

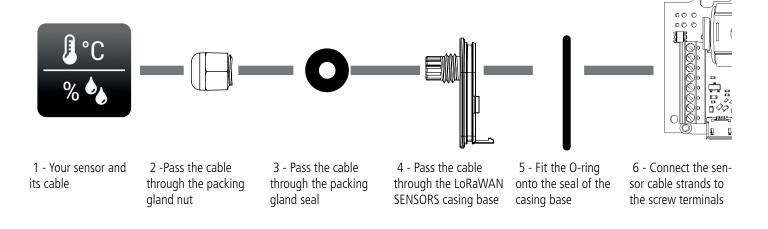
The product is delivered disassembled so that you can access the lower part of the electronics. This part enables the sensor or sensors to be connected to the screw terminals as well as access to the configuration switches.

Once assembly of the sensors has been finalised and the configuration has been carried out, the casing can be closed.

NB: Once the casing is closed, it will no longer be possible to open it without running the risk of voiding the IP67 protection index guarantee.

5.2. Fitting the packing gland seal

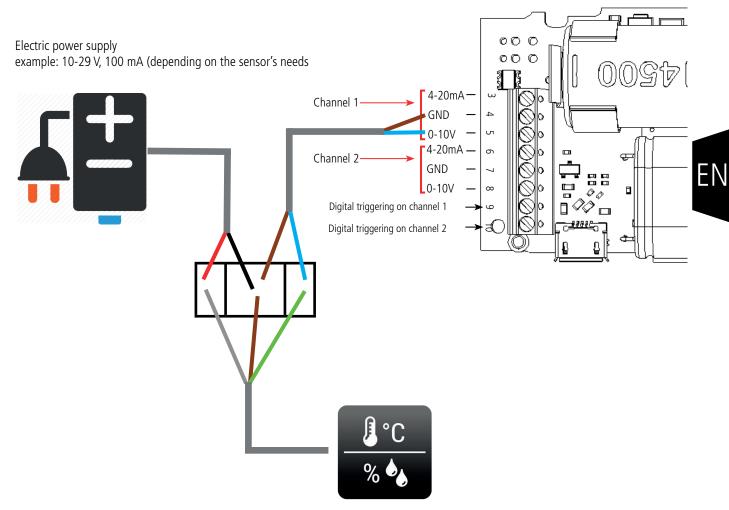
Before connecting your sensor's cable strands to the product's screw terminals, you must insert the packing gland's nut and the seal appropriate for your configuration.


Three types of seals are supplied with product: For a cable with a diameter of 5 mm, for a cable with a diameter of 3 mm, and for two cables with diameters of 2.2 mm.

Assembly procedure:

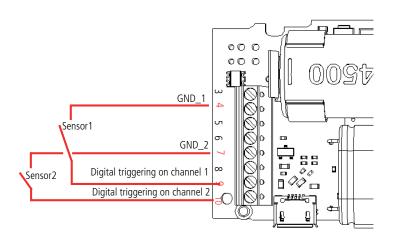
5.3. Mounting the sensor on the screw terminals

Once the nut and the packing gland seal are fitted, the sensor cables' strands can be connected to the product unit's screw terminals.


Note: A maximum of 2 sensors may be used in parallel. The user can choose freely between analog and digital options

Analog sensors require an electric power supply that the battery of the product unit is not able to provide. You must therefore supply the analog sensor via an external electrical source.

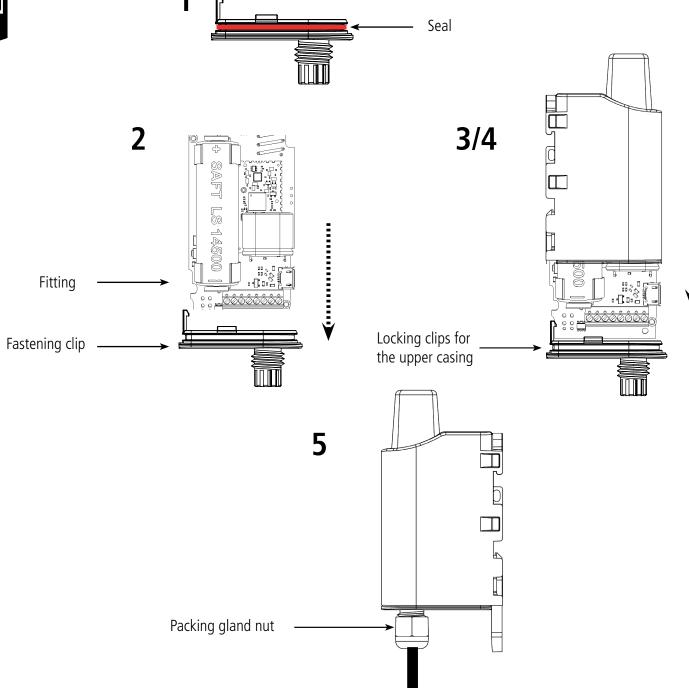
5.4. Wiring of analog sensors


Example of analog sensor(s) assembly

Temperature + humidity sensor

5.5. Wiring of the digital triggering inputs

The wiring of the digital inputs allows acquisition on the analog channels and a transmission of data on occurrence of an event on these inputs.

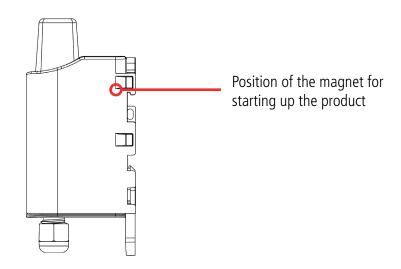

Direct mounting digital sensor(s)

5.6. Closing the casing

Once previous stages have been carried out, you can close the casing of the LoRaWAN ANALOG

Procedure:

- 1. Make sure that the seal is properly positioned on the base
- 2. Clip the electronic board onto the casing's base. Make sure that the fastening clip is properly locked into the board's fitting.
- 3. Insert the upper part of the casing. Inside this part there are guide rails for the board. Make sure that the board is properly positioned within these guides.
- 4. Once the board is in position, lower the upper cover and lock it onto the casing's base. Strong pressure will enable both parts to be clipped together and will enable protection level IP67 to be ensured.
- 5. Finish the assembly by locking the packing gland's nut in position



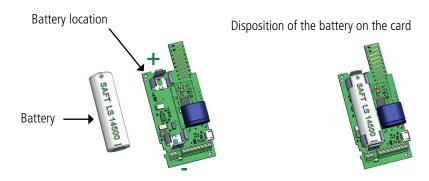
5.7. Starting up the product using a magnet

Once the product has been configured and its assembly has been finalised, the product is ready to be started up.

The start-up is carried out using a magnet which you place on the upper part of the product (cf. the diagram below). The magnet must be held in position for at least 6 seconds so as to confirm the start-up of the product. When the magnet is well detected, the green LED lights up for 1 second.

Once the LoRaWAN ANALOG unit validates its start-up, it immediately transmits status frames followed by a data frame (according the defined periodicity).

5.8. Replacing the battery


When the low battery indicator is activated (indicator in the frame or flashing of the red LED), it is possible to change the internal battery of the unit.

It is important to use a battery of the same reference, SAFT LS14500.

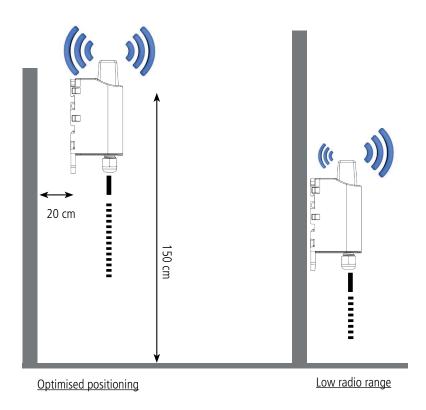
Procedure to change the battery:

- 1. Follow the instructions in the previous paragraphs to open the unit
- 2. Remove the battery and replace it with the new one respecting the polarity as indicated on the electronic card
- 3. Close the unit
- 4. Restart the product with the magnet as for a first start

After this procedure the product will behave as during a first start.

6. INSTALLATION AND USE

6.1. Correct positioning of the product

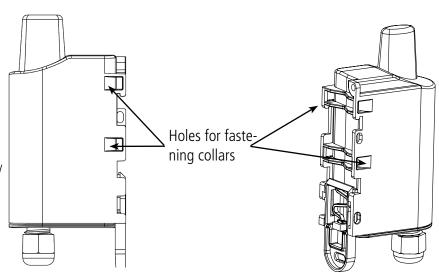

There are two key rules for optimising radio ranges.

- The first one consists of positioning your product as high as possible.
- The second one consists of limiting the number of obstacles in order to avoid excessive attenuation of the radio wave.

Position: To the extent possible, install the transmitter at a minimum height of 1.50 m and do not attach it to the wall.

Obstacles: Ideally, the product must be 20 cm away from any obstacle and, if possible, near an opening (the closer the obstacle is, the more the emitted power will be absorbed). All the materials encountered by a radio wave will attenuate it. Bear in mind that metal (metal cabinets, beams, etc.) and concrete (reinforced concrete, partitions, walls, etc.) are the most critical materials for the propagation of radio waves.

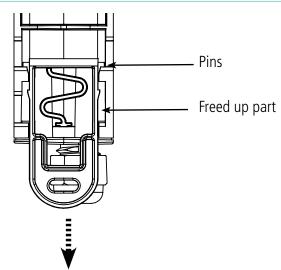
6.2. Types of fastenings



The product offers 3 fastening methods that enable numerous ways of positioning it depending on the environment where it has to be deployed.

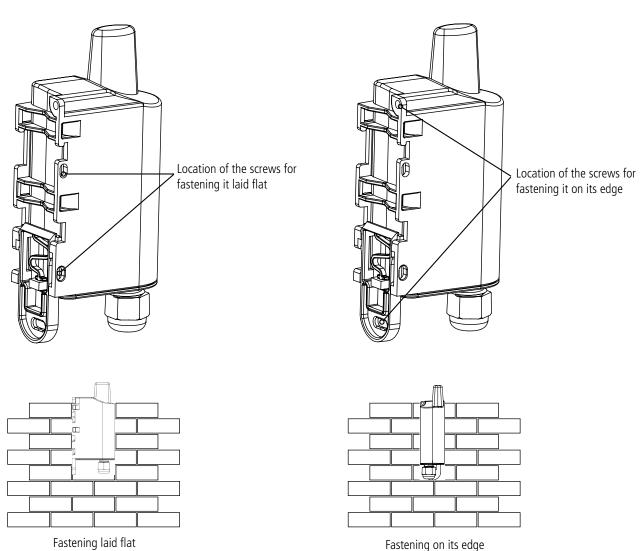
6.2.1 Tube or mast fastenings

As explained in section 4.1, the best radio performance is achieved by positioning the product as high as possible.


The fastening collar fastenings enable the product to be fastened on a mast or tube under completely safe conditions.

To optimise fastening onto a tube or mast, we recommend you remove the Rail-DIN locking/unlocking lever.

To remove it, pull the lever down until the locking pins are opposite a freed-up part and then remove the lever

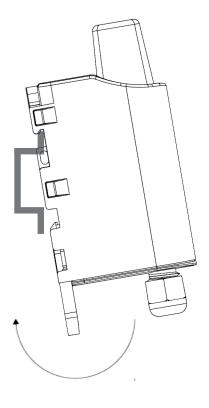


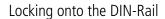
6.2.2 Fixing with screws

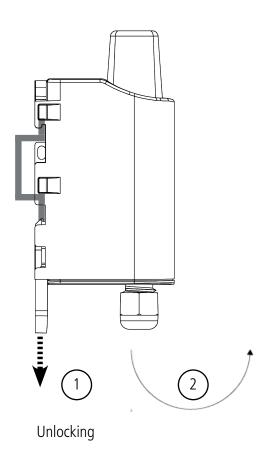
The product is delivered with 2 CBLZ 2.2 x 19 mm screws and 2 SX4 wall plugs. Use these products or equivalent products in order to fasten your product onto a flat support.

Two positions may be selected: Laid flat or on its edge.

- Placing it on its edge enables the product to be placed at a distance from its support and helps achieve better propagation of the radio waves.
- If you opt for laying it flat, make sure you remove the Rail-DIN locking/unlocking lever, as explained above






6.2.3 DIN-Rail fixing

This system, integrated into the casing, enables the product to be fastened onto a standard 35 mm rail.

- To fit the casing, place the upper inserts on the rail and lower the product to clip it into position.
- To remove the product, pull the unlocking lever down and disengage the product from the rail.

7. DOCUMENT HISTORY

Version	Contents		
V2.0.0	Modifications suite mise à jour RTU & APP		
V1.2.0	Update part 3		
V1.0.1	Update Declaration of conformity		
V1.0.0	Creation		

DEUTSCH Vorschriften

HAFTUNGSAUSSCHLUSS

Dieses Dokument und die Nutzung aller darin enthaltenen Informationen setzt das Einverständnis mit den Bestimmungen und Bedingungen von adeunis® voraus.

adeunis® übernimmt keine Garantie für die Richtigkeit oder Vollständigkeit des Inhalts dieses Dokuments und behält sich das Recht vor, jederzeit und ohne Vorankündigung Änderungen an den Produktspezifikationen und -beschreibungen vorzunehmen.

adeunis® behält sich alle Rechte an diesem Dokument und den darin enthaltenen Informationen vor. Die Vervielfältigung, Nutzung oder Weiterverbreitung an Dritte ohne ausdrückliche Genehmigung ist streng untersagt. Copyright © 2016, adeunis®.

adeunis® ist eine eingetragene Marke in den EU-Staaten und anderen Ländern.

TECHNISCHER SUPPORT

Website

Unsere Website enthält viele nützliche Informationen: Informationen zu Produkten und Zubehör, Benutzeranleitungen, Konfigurationssoftware und technische Dokumente, die rund um die Uhr abrufbar sind.

E-Mail

Falls Sie technische Probleme haben oder nicht die benötigten Informationen in den bereitgestellten Dokumenten finden können, setzen Sie sich per website mit unserem technischen Support in Verbindung. Verwenden Auf diese Weise wird sichergestellt, dass Ihrze Anfrage so schnell wie möglich bearbeitet wird.

Nützliche Informationen bei Kontaktierung unseres technischen Supports

Wenn Sie unseren technischen Support kontaktieren, halten Sie bitte folgende Informationen bereit:

- Produkttyp
- Firmware-Version
- Klare Beschreibung Ihrer Frage oder Ihres Problems
- Ihre vollständigen Kontaktdaten

VORBEMERKUNG

Alle Rechte an dieser Anleitung liegen ausschließlich bei . Alle Rechte vorbehalten. Die Vervielfältigung dieser Anleitung (ohne schriftliches Einverständnis des Eigentümers) mittels Drucken, Kopieren, Speichern oder in anderer Weise, die Übersetzung dieser Anleitung (vollständig oder teilweise) in jedwede Sprache, einschließlich aller Programmiersprachen, unter Verwendung jeglicher elektrischer, mechanischer, magnetischer, optischer, manueller Geräte oder anderer Methoden, ist untersagt.

adeunis® behält sich das Recht vor, ohne schriftliche Bekanntgabe und ohne ausdrückliches Verlangen seiner Kunden die technischen Spezifikationen oder Funktionen seiner Produkte zu ändern und sicherzustellen, dass die ihnen zur Verfügung gestellten Informationen gültig sind.

Die -Konfigurationssoftware und -programme adeunis® werden in einer unveränderlichen Version kostenlos bereitgestellt. adeunis® kann für einen bestimmten Typ von Anwendungen keinerlei Garantie übernehmen, auch keine Gewähr für deren Eignung und Verwendbarkeit. Der Hersteller oder Vertreiber eines -Programms kann auf keinen Fall für etwaige Schäden infolge der Nutzung dieses Programms haftbar gemacht werden. Die Namen der Programme sowie alle Urheberrechte im Zusammenhang mit den Programmen sind ausschließliches Eigentum von adeunis®. Jedwede(r) Übertragung, Lizenzierung an Dritte, Vermietung, Verleih, Überführung, Kopie, Bearbeitung, Übersetzung, Veränderung in einer anderen Programmiersprache oder Rückwärtsentwicklung (Reverse-Engineering) ohne die schriftliche Genehmigung und Zustimmung von ist untersagt.

Adeunis

283, rue Louis Néel 38920 Crolles Frankreich

Website www.adeunis.com

UMWELTSCHUTZHINWEISE

Es wurden alle überflüssigen Verpackungsmaterialien vermieden. Wir haben uns bemüht, dass die Verpackung leicht in drei Materialarten getrennt werden kann: Pappe (Schachtel), expandiertes Polystyrol (Puffermaterial) und Polyethylen (Tüten, Schaumstoff-Schutzlage). Ihr Gerät besteht aus recycelbaren Materialien, die im Falle einer Demontage durch ein Fachunternehmen wiederverwendet werden können. Bitte beachten Sie die vor Ort geltenden Vorschriften zur Entsorgung der Verpackungsabfälle, verbrauchten Batterien und Ihres Altgeräts.

WARNHINWEISE

Lesen Sie die Hinweise in dieser Anleitung.

Die Sicherheit dieses Produkts wird nur für eine bestimmungsgemäße Verwendung gewährleistet. Die Wartung darf nur von einer qualifizierten Person durchgeführt werden.

Achtung: Das Gerät nicht in der Nähe einer Wärme- oder Feuchtigkeitsquelle installieren.

Achtung: Bei Öffnung des Geräts keine anderen als die in dieser Anleitung vorgesehenen Vorgänge durchführen.

DE

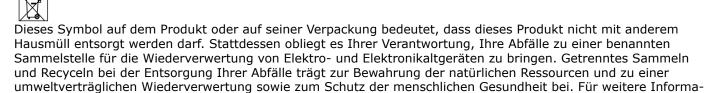
Achtung: Das Produkt nicht öffnen – Gefahr eines Stromschlags.

Achtung: Zu Ihrer Sicherheit muss vor jedem technischen Eingriff am Gerät dieses stromlos geschaltet

werden.

Achtung: Zu Ihrer Sicherheit muss der Stromversorgungskreis des Produkts vom Typ SELV (Sicherheitskleinspannung) sein und es sich um Stromquellen mit begrenzter Leistung handeln.

Bitte beachten Sie: Wenn die Antenne draußen installiert ist, ist es notwendig, den Kabelschirm mit der Erdung des Gebäudes zu verbinden. Wir empfehlen den Blitzschutz. Der gewählte Schutzkit muss das Koaxialkabel wie geerdet haben (zB: Koaxial-Blitzableiter mit Erdung des Kabels an verschiedenen Stellen auf der Antenne an der Basis von Pylonen und am Eingang oder kurz vor dem Betreten der Räumlichkeiten).


Das Produkt muß mit einem Schaltmechanismus zum Abschalten des elektrischen Stroms ausge-stattet werden, welche sich in der Nähe der Ausrüstung befinden muss. Jede elektrische Verbin-dung des Produktes muß mit einer Schutzvorrichtung gegen Spannungsspitzen und Kurzschlüsse ausgestattet werden.

GEBRAUCHSHINWEISE

- Überprüfen Sie vor Benutzung des Systems, ob die in dessen Betriebsanleitung angegebene Versorgungsspannung mit Ihrer Stromquelle übereinstimmt. Falls nicht, wenden Sie sich an Ihren Lieferanten.
- Stellen Sie das Gerät auf eine ebene, feste und stabile Oberfläche.
- Das Gerät muss an einem ausreichend belüfteten Standort installiert werden, um jedes Risiko einer internen Überhitzung auszuschließen, und es darf nicht mit Objekten wie Zeitungen, Decken, Gardinen usw. abgedeckt werden
- Das Gerät darf auf keinen Fall Hitzequellen wie Heizgeräten ausgesetzt werden.
- Stellen Sie das Gerät nicht in der Nähe brennender Gegenstände wie Kerzen, Lötbrennern, usw. auf.
- Das Gerät darf keinen aggressiven Chemikalien oder Lösungsmitteln ausgesetzt werden, die den Kunststoff angreifen oder die Metallteile korrodieren könnten.
- Das Terminal muss am Gürtel mit Hilfe eines dafür vorgesehenen Clips getragen werden.

ENTSORGUNG VON ABFÄLLEN DURCH DIE NUTZER IN PRIVATHAUSHALTEN IN DER EUROPÄISCHEN UNION

tionen zum nächstgelegenen Recyclingzentrum wenden Sie sich an das nächste Rathaus, den Entsorgungsdienst für Haushaltsabfälle oder das Geschäft, in dem Sie das Produkt gekauft haben.

 Dieses Symbol auf dem devode Gerät oder seiner Verpackung bedeutet den Gebrauch einer Gleichstrom-Spannung.

Achtung: Es besteht Explosionsgefahr, wenn die Batterien durch einen falschen Typ ersetzt werden. Entsorgen Sie die Batterien gemäß den Gebrauchshinweisen. Beim Wechsel der Batterien muss das Produkt wieder richtig und ordnungsgemäß zusammengebaut werden.

WICHTIG für die Schweiz: Für die Batterien muss Anhang 4.10 der Norm SR 814.013 Anwendung finden.

Contact details

The Netherlands

Elektrostraat 17 NL-7483 PG Haaksbergen

T: +31 (0)53 573 33 33 F: +31 (0)53 573 33 30 E: nl@texim-europe.com

Belgium

Zuiderlaan 14 bus 10 B-1731 Zellik

+32 (0)2 462 01 00 F: +32 (0)2 462 01 25

E: belgium@texim-europe.com

UK & Ireland

St. Mary's House, Church Lane Carlton Le Moorland Lincoln LN5 9HS

+44 (0)1522 789 555 +44 (0)845 299 22 26 E: uk@texim-europe.com

Germany North

Bahnhofstrasse 92 D-25451 Quickborn

T: +49 (0)4106 627 07-0 F: +49 (0)4106 627 07-20 E: germany@texim-europe.com

Germany South

Martin-Kollar-Strasse 9 D-81829 München

T: +49 (0)89 436 086-0 F: +49 (0)89 436 086-19

E: germany@texim-europe.com

Austria

Warwitzstrasse 9 A-5020 Salzburg

T: +43 (0)662 216 026 +43 (0)662 216 026-66 austria@texim-europe.com

Nordic region

Sdr. Jagtvej 12 DK-2970 Hørsholm

T: +45 88 20 26 30 F: +45 88 20 26 39

E: nordic@texim-europe.com

General information

info@texim-europe.com www.texim-europe.com

