

Dragino LoRaWAN Weather Station User Manual

Document Version: 1.0.0

Image Version: v1.0

Version	Description	Date
1.0	Release	2022-Mar-16

1.	In	troduction5
	1.1	Overview5
2.	He	ow to use6
	2.1	Installation
	2.2	How it works?
	2.3	Example to use for LoRaWAN network9
	2.4	Uplink Payload
	2.	4.1 Uplink FPORT=5, Device Status13
	2.	4.2 Uplink FPORT=2, Real time sensor value16
	2.	4.3 Decoder in TTN V317
	2.5	Show data on Application Server
3.	Co	onfigure WSC1-L via AT Command or LoRaWAN Downlink20
	3.1	Set Transmit Interval Time
	3.2	Set Emergency Mode21
	3.3	Add or Delete RS485 Sensor21
	3.4	RS485 Test Command23
	3.5	RS485 response timeout23
	3.6	Set Sensor Type
4.	Рс	ower consumption and battery25
	4.1	Total Power Consumption25
	4.2	Reduce power consumption25
	4.3	Battery25
5.	М	lain Process Unit WSC1-L
	5.1	Features
	5.2	Power Consumption
	5.3	Storage & Operation Temperature
	5.4	Pin Mapping
	5.5	Mechanical
	5.6	Connect to RS485 Sensors

6.	Weathe	r Sensors2	9
	6.1 Rain	Gauge WSS-01	9
	6.1.1	Feature2	9
	6.1.2	Specification2	9
	6.1.3	Dimension	0
	6.1.4	Pin Mapping3	0
	6.1.5	Installation Notice	1
	6.2 Wind	Speed/Direction WSS-02	2
	6.2.1	Feature	2
	6.2.2	Specification	2
	6.2.3	Dimension	2
	6.2.4	Pin Mapping3	3
	6.2.5	Angle Mapping	3
	6.2.6	Installation Notice	4
	6.3 CO2/	/PM2.5/PM10 WSS-03	5
	6.3.1	Feature	5
	6.3.2	Specification	5
	6.3.3	Dimension	5
	6.3.4	Pin Mapping3	6
	6.3.5	Installation Notice	6
	6.4 Rain/	/Snow Detect WSS-04	7
	6.4.1	Feature	
	6.4.2	Specification	
	6.4.3	Dimension	7
	6.4.4	Pin Mapping	7
	6.4.5	Installation Notice	8
	6.4.6	Heating	8
	6.5 Temp	erature, Humidity, Illuminance, Pressure WSS-05	9
	6.5.1	Feature	
	6.5.2	Specification	
	6.5.3	Dimension	
	6.5.4	Pin Mapping	-
	6.5.5	Installation Notice	
	6.6 Total	Solar Radiation sensor WSS-06	1
	6.6.1	Feature	
	6.6.2	Specification	
	6.6.3	Dimension	
	6.6.4	Pin Mapping	
	6.6.5	Installation Notice	
	6.7 PAR (Photosynthetically Available Radiation) WSS-074	3

_			-
	6.	7.1	Feature
	6.	7.2	Specification
	6.	7.3	Dimension
	6.	7.4	Pin Mapping
	6.	7.5	Installation Notice44
7.	F/	AQ	
	7.1	What	else do I need to purchase to build Weather Station?45
	7.2	How	to upgrade firmware for WSC1-L?46
	7.3	How	to change the LoRa Frequency Bands/Region?46
	7.4	Can I	add my weather sensors?
8.	Т	ouble	Shooting
9.	0	rder In	fo47
	9.1	Main	Process Unit
	9.2	Senso	ors
1().	Supp	ort47
11	ι.	Арре	ndix I: Field Installation Photo48

1. Introduction

1.1 Overview

Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. They consist of a main process device (WSC1-L) and various sensors.

The sensors include various type such as: Rain Gauge, Temperature/Humidity/Pressure sensor, Wind Speed/direction sensor, Illumination sensor, CO2 sensor, Rain/Snow sensor, PM2.5/10 sensor, PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor and so on.

Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external 12v solar power and have a built-in li-on backup battery. WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.

WSC1-L is full compatible with LoRaWAN Class C protocol, it can work with standard LoRaWAN gateway.

2. How to use

2.1 Installation

Below is an installation example for the weather station. Field installation example can be found at Appendix I: Field Installation Photo.

WSC1-L Weather Station Installation Diagram

Wiring:

- 1. WSC1-L and sensors all powered by solar power via MPPT
- 2. WSC1-L and sensors connect to each other via RS485/Modbus.
- 3. WSC1-L read value from each sensor and send uplink via LoRaWAN

WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:

Notice 1:

- All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
- WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
- > Weather sensors won't work if solar panel and storage battery fails.

Notice 2:

Due to shipment and importation limitation, user is better to purchase below parts locally:

- Solar Panel
- Storage Battery
- MPPT Solar Recharger
- Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
- Cabinet.

2.2 How it works?

Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L, it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.

Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.

Notice:

- 1) WSC1-L will auto scan available weather sensors when power on or reboot.
- 2) User can send a <u>downlink command(</u>增加下发命令的连接)</u> to WSC1-L to do a re-scan on the available sensors.

2.3 Example to use for LoRaWAN network

This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.

Assume the DLOS8 is already set to connect to <u>TTN V3 network</u>. We need to add the WSC1-L device in TTN V3:

Step 1: Create a device in TTN V3 with the OTAA keys from WSC1-L.

Each WSC1-L is shipped with a sticker with the default device EUI as below:

User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: Add APP EUI in the application.

		rview 🗖 Applicati	ons 🚔 Gateways	K Orga
	Add application			
	Owner*			
	davidhuang		\sim	
	Application ID*			
	my-new-application			
	Application name			
	My new application			
	Description			
	Description for my new application	1		
	Optional application description; ca	n also be used to save n	 otes about the application	
	Create application			
— (((
D: 123	s 🚢 2 Collaborators 📴 2 API keys			Created 95 d
ID: 123	s 🚢 2 Collaborators 🗣 2 API keys	• Live data	231234234_ Forward data maccada to	Created 95 d See all ac
ID: 123	s 🚢 2 Collaborators 📴 2 API keys	 ▲ 10:09:42 ▲ 10:09:42 ▲ 10:09:42 	231234234 Forward data message to 231234234 Store upstream data mess	See all ac Application Server
ID: 123 A End devices General informat Application ID	s 🚉 2 Collaborators 🗣 2 API keys	▲ 10:09:42 1 ● 10:09:42 1 ↑ 10:09:42 1 ↑ 10:09:42 1 ↑ 10:09:42 1 ↑ 10:09:42 1		See all ac Application Server sage sage sage
General informat Application ID Created at	s 🗱 2 Collaborators 🗣 2 API keys ion 123 Feb 2, 2021 11:12:30	▲ 10:09:42 1 ● 10:09:42 1 ↑ 10:09:42 1 ↑ 10:09:42 1 ↑ 10:09:42 1 ↑ 10:09:42 1	231234234 Store upstream data mess 231234234 Forward uplink data mess 231234234 Receive uplink data mess 231234234 Successfully processed of	See all ac Application Server sage sage sage

Choose Manually to add WSC1-L

Register end device			
From The LoRaWAN Device Repository	Manually		
Preparation			
Activation mode*			
 Over the air activation (OTAA) 			
Activation by personalization (ABP)			
Multicast			
Do not configure activation			
LoRaWAN version ⑦*			
Select		\sim	
Network Server address			
eu1.cloud.thethings.network			
Application Server address			
eu1.cloud.thethings.network			
External Join Server 🗇			
Add APP KEY and DEV EUI			
2. Enter registration data			

Eu	rope 863-870 MHz (SF12 for RX2)
The	requency plan used by the end device
Арр	UI ⊙ * · · · · · · · · · · · · 00
The	AppEUI uniquely identifies the owner of the end device. If no AppEUI is provided by the device manufacturer (usually for de
Dev	₩⊙*
The	DevEUI is the unique identifier for this end device
Арр	tey ⊚ * ¢
The	oot key to derive session keys to secure communication between the end device and the application
End	device ID*
m	new-device

Step 2: Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.

THE THINOS STACK	II Overvie	w 🖸 Applications 🚠 Gateways 🚊	%. Organizations	DEUL Community No SLA applicable	Luherong *
11 T.9865		A	pplications > 作語的 > End devices > 作語的表示認定,2022/12/00 class C 10min > Live data		
Overview		1	◎ 气象站_核页_2021/11/30 class C 10min ID: euro000000002315688		
🙏 End devices		·	▶ 2		
Live data			Overview Live data Messaging Location Payload formatters Claiming General settings		
> Payload formatters ~	Time	Туре	Data preview Verbose stream	💌 🛓 Export as JSO	N II Pause 📱 Cles
t, Integrations ~	↓ 15:45:37	Schedule data downlink for transmissi.	Rdi Delay: 5		
Collaborators	↑ 15:45:37	Forward uplink data message	Payload: { 42: 201, TSR: 16 } 00 02 00 AD AZ 02 00 C9 💠 🍓 FPort: 2 Data rate: SF11BM125 SNR: 7 RSSI: -107		
API keys	↑ 15:45:37	Successfully processed data message	DevAddr: 28 08 44 29 O a FCnt: 2 FFort: 2 Data rate: SF118W125 SNR: 7 RSSI: -107		
	↑ 15:45:26	Forward uplink data message	Payload: { CO2: 614, HUM: 49.2, PAR: 312, PMID: 18, PM2_5: 10, TEM: 25.8, illumination: 77870, pressure: 1009.7, rain_gauge: 0, rain_snow: 0, wind_directio	"ESE", wind_direction	on_angle: 106.8, wind
General settings	↑ 15:45:26	Successfully processed data message	DevAddr: 26 08 44 29 O a FCnt: 1 FPort: 2 Data rate: SF115W125 SNR: 5.6 RSSI: -104		
	↓ 15:45:01	Schedule data downlink for transmissi.			
	↑ 15:45:01	Forward uplink data message	Payload: { bat: 3.836, frequency_band: "EU668", node: "WGC1-L", sub_band: 0, version: "V1.0.0", weather_sensor_types: "1000fe" } 00 01 00 01 00 08 DC 10	FPort: 5 Data r	ate: SF12BW125 SNR:
	↑ 15:45:01	Successfully processed data message	DevAddr: 28 08 44 29 o 🐐 FPort: 5 Data rate: SF12EW125 SNR: 1.2 RSSI: -101		
	↑ 15:44:31	Forward join-accept message			
	GD 15:44:30	Accept join-request			
	↑ 15:44:25	Forward join-accept message			
	GD 15:44:23	Accept join-request			
	↑ 15:44:15	Forward uplink data message	Payload: { undefined: "NaW" } 11 📀 🐞 FPort: 2 Data rate: SF78#125 SNR: -0.5 RSSI: -104		
	↑ 15:44:15	Successfully processed data message	DevAddr: 26 08 38 34 🔿 🐞 FCnt: 341 FPort: 2 Data rate: 59720125 508: -0.5 RSSI: -104		
	# 15:44:12	Console: Events cleared	The events list has been cleazed		

2.4 Uplink Payload

Uplink payloads include two types: Valid Sensor Value and other status / control command.

- Valid Sensor Value: Use FPORT=2
- Other control command: Use FPORT other than 2.

2.4.1 Uplink FPORT=5, Device Status

Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours

User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink

Size (bytes)	1	2	1	1	2	3
Value	<u>Sensor</u>	<u>Firmware</u>	<u>Frequency</u>	Sub-band	<u>BAT</u>	Weather Sensor Types
	<u>Model</u>	<u>Version</u>	<u>Band</u>			

THE THINGS ST. Community Edit	ACK	II Overvie	w D Applications	🔒 Gateways	AL Organizations	EU1 Community No SLA applicable	Iuherong
71 9 856					Applications > 气像的 > End devices > 气像的人振荡_2022/11/30 class C 10min > Live data		
Overview					三 气象站_楼顶_2021/11/30 class C 10min ID: en=000000000000000000000000000000000000		
End devices					↑2 ↓1 * Last activity 25 seconds ago ①		
Live data					Overview Live data Messaging Location Payload formatters Claiming General settings		
Payload formatters	~	Time	Туре		Data preview Verbose stream	💌 🛓 Export as JSO	DN II Pause 📱 Cles
Integrations	~	↓ 15:45:37	Schedule data downl	ink for transmis	L. Rd.Delay: 5		
Collaborators		↑ 15:45:37	Forward uplink data	nessage	Payload: { A2: 201, TSR: 16 } 00 02 00 A0 A2 02 00 09 💠 🐞 FPort: 2 Data mate: SF11BH125 SNR: 7 RSSI: -107		
API keys		↑ 15:45:37	Successfully proces	sed data message	DevAddr: 26 08 44 29 O 🐞 FCnt: 2 FFort: 2 Data rate: SF118W125 SNR: 7 RSSI: -187		
ornegs		↑ 15:45:26	Forward uplink data	nessage	Payload: { CO2: 814, HUM: 49.2, PAR: 312, PMID: 18, PM2_5: 10, TEM: 25.8, illumination: 77870, pressure: 1009.7, rain_gauge: 0, rain_snow: 0, wind_direction	n: "ESE", wind_directio	on_angle: 106.8, wind
General settings		↑ 15:45:26	Successfully proces	sed data message	DevAddri 20 00 44 29 🔿 🐞 FCnti 1 FPurti 2 Data rate: SF115M125 SNR: 5.5 ROSI: -104		
		↓ 15:45:01	Schedule data downl	ink for transmis	L. Rx1.Delay: 5		
		↑ 15:45:01	Forward uplink data	nessage	Payload: { bat: 3.036, frequency_band: "EUS68", node: "MSC1-1", sub_band: 0, version: "V1.0.0", weather_sensor_types: "1000fe" } 00 01 00 01 00 00 00 00 10 _	D 🐐 FPort: 5 Data r	rate: SF12BW125 SNR:
		↑ 15:45:01	Successfully proces	sed data message	DevAddr: 26 08 44 29 🛛 🐞 FPort: 5 Data rate: SF12BW125 SNR: 1.2 RSSI: -101		
		↑ 15:44:31	Forward join-accept	nessage			
		GD 15:44:30	Accept join-request				
		↑ 15:44:25	Forward join-accept	ressage			
		GD 15:44:23	Accept join-request				
		↑ 15:44:15	Forward uplink data	nessage	Payload: { undefined: 'NuN' } 11 O 🐞 FPort: 2 Data rate: SF7Bd125 SNR: -0.5 RSSI: -104		
		↑ 15:44:15	Successfully proces	sed data message	DevAddr: 26 08 35 34 🔿 🐞 FCnt: 341 FFort: 2 Data rate: SF78H125 SNR: -0.5 RSSI: -104		
		# 15:44:12	Console: Events cle	ared	The events list has been cleazed		

Sensor Model: For WSC1-L, this value is 0x0D.

Firmware Version: 0x0100, Means: v1.0.0 version.

Frequency Band:

*0x01: EU868 *0x02: US915 *0x03: IN865 *0x04: AU915

*0x05: KZ865 *0x06: RU864 *0x07: AS923 *0x08: AS923-1 *0x09: AS923-2 *0x0a: AS923-3

Sub-Band: value 0x00 ~ 0x08(only for CN470, AU915, US915. Others are0x00)

BAT: shows the battery voltage for WSC1-L MCU.

Ex1: 0x0BD6/1000 = 3.03 V

Weather Sensor Types:

Byte3 Byte2 Byte1

Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected

Byte3	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
	N/A	Customize-A4	Customize-A3	Customize-A2	Customize-A1	N/A	N/A	N/A
Byte2	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Byte1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	WSS-07	WSS-06	WSS-05	WSS-04	WSS-03	WSS-02	WSS-01	N/A

Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)

External sensors detected by WSC1-L include :

custom sensor A1,

PAR sensor (WSS-07),

Total Solar Radiation sensor (WSS-06),

CO2/PM2.5/PM10 (WSS-03),

Wind Speed/Direction (WSS-02)

User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink : **Downlink:0x26 01**

www.dragino.com

THE THINGS STACK	Soverview Applications 🖨 Gateways	21. Organizations DE EXE Community The copyright CD Laborage +
		Applications > ^{me} 像站 > End devices > ^{me} 像站,接顶,2023/11/00 class C Somin > Live dela
Uveniew 0		一 气象站_楼顶_2021/11/30 class C 10min ID the CONSTRUCTIONS
🙏 End devices		↑ 339 🔸 36 🔹 Last activity 4 minutes ago 🛈
Live data		Overview Live data Messaging Location Phyload formatters Claiming General settings
Payload formatters ~	Time Type	Data preview Verbose stream 🍞 🛓 Export as JSON II Pause 📱 Clear
犬 Integrations ~	\uparrow 15:36:56 . Forward uplink data message	Paylood: { 42: 200, CO2: 017, MAH 50.6, MAR 335, PHID: 10, PH2_6: 32, TEM: 25.2, TSA: 23, 111umination: 00000, pressure: 1009.3, rain_gauge: 0, rain_secor: 0, wind_direction: "C", wind_direction_angle:
La Collaborators	\uparrow 15:36:56. Successfully processed data message	e DevAddr: 20 00 35 34 🔿 🐞 FCnt: 399 FPort: 2 Data rate: 5F786225 SNR: 6.8 RDSI: -99
Ov APIkevs	↑ 15:36:30 Forward uplink data message	Paylod: { bat: 3.03, frequency_band: "UBMO", node: "WCL-1", sub_band: 0, version: "UL.0.0", weither_sensor_types: "10000" } 00 01 00 01 00 00 00 01 0 0 0 0 0 0 0
	\uparrow 15:36:30 Successfully processed data message	e Dewkdrr 24 68 83 4 or 🚯 PCnt 33 FPort 5 Data rate: \$P780226 SNR: 2.6 RSS1: -107
General settings	ψ 15:36:04. Schedule data downlink for transmi	ssi. FPutta Mic paylada: 20 50 O
	ψ 15:36:04 . Forward downlink data message	FPutta Payloads 20 80 40 🐱
	\uparrow 15:34:09 Forward uplink data message	Paylodi (A2: 202; 632; 613, MAH: 60.6, PAR: 537, PMED: 10, PR2_6: 7, TEH: 25.8, TSH: 21.4, 111unination: 81420, pressure: 1009.3, Isin_gauge: 0, Isin_snow: 0, Win_direction_angle
	\uparrow 15:34:09 Successfully processed data message	e DevAdr: 20 00 20 24 4 💀 🚯 FCnt: 337 FPort: 2 Data xate: SF7BH2S SNR: -1.25 RSSI: -107
	↑ 15:24:00 Forward uplink data message	
	\uparrow 15:24:08 Successfully processed data message	e
	↑ 15:14:09 Forward uplink data message	
	\uparrow 15:14:09 Successfully processed data messag	•

2.4.2 Uplink FPORT=2, Real time sensor value

WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and <u>can be changed</u>. Uplink uses FPORT=2 and every 20 minutes send one uplink by default.

The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:

Uplink Payload:	Sensor Segment 1		Sensor Segment 2		Sensor S	egment n
Sensor Segment Define:		Type Code	Length (Bytes)	Measur	ed Value	

Sensor Type Table:

Sensor Type	Туре	Range	Length	Example
	Code		(Bytes)	
Wind Speed	0x01	Speed: 0 \sim 60m/s	0x03	0x0024/10=3.6m/s
		Level: 0 \sim 17		(0x02FE: No Sensor, 0x02FF: Value Error)
				0x02=2
				(0x14: No Sensor, 0x15: Value Error)
Wind	0x02	Angel: 0 \sim 360°	0x03	0x029A/10=66.6°
Direction		Direction: 16 positions		(0x0EFE: No Sensor,0x0EFF: Value Error)
				0X03=3(ENE)
				(0x14: No Sensor,0x15: Value Error)
Illumination	0x03	0~20000Lux	0x02	0x04D2 *10=12340Lux
				(0x4EFE: No Sensor,0x4EFF: Value Error)
Rain / Snow	0x04	00: No, 01 Yes.	0x01	0x00 (00) No Rain or snow detected
				(0x02: No Sensor,0x03: Value Error)
CO2	0x05	0~5000ppm	0x02	0x0378=888ppm
				(0x14FE: No Sensor,0x14FF: Value Error)
Temperature	0x06	-30°C~70°C	0x02	0xFFDD/10=-3.5℃
				(0x02FE: No Sensor,0x02FF: Value Error)
Humidity	0x07	0~100%RH	0x02	0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value
				Error)
Pressure	0x08	10 \sim 1100hPa	0x02	0x2748/10=1005.6hPa
				(0x00: No Sensor,0x01: Value Error)
Rain Gauge	0x09	0mm/min \sim 100mm/min	0x02	0x0000/10=0mm /min
				(0x03FE: No Sensor,0x03FF: Value Error)
PM2.5	0x0A	$0{\sim}1000\mu\text{g/m}^3$	0x02	0x0023=35μg/m ³
				(0x03FE: No Sensor,0x03FF: Value Error)

www.dragino.com

PM10	0x0B	$0{\sim}1000\mu\text{g/m}^3$	0x02	0x002D=45µg/m ³
				(0x03FE: No Sensor,0x03FF: Value Error)
PAR	0x0C	0∼2500µmol/m²∙s	0x02	0x00B3=179µmol/m²•s
				(0x09FE: No Sensor,0x9FF: Value Error)
Total Solar	0x0D	0~2000W/m ²	0x02	0x0073/10=11.5W/m ²
Radiation				(0x4EFE: No Sensor,0x4EFF: Value Error)

Below is an example payload:

<mark>01 03 00 14 02</mark> <mark>02 03 02 C9 03</mark> <mark>03 02 11 90</mark> <mark>04 02 00 0A</mark> 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73

When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.

➢ When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03

When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:

Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 0C 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 Uplink 2: 0D 02 00 73

2.4.3 Decoder in TTN V3

In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.

Download decoder for suitable platform from:

https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L

and put as below:

🝠 DRAGI	NO www.dragino.com
Overview	Overview Live data Messaging Location Payload formatters Claiming General settings
👗 End devices	Uplink Downlink
iii Live data	
<> Payload formatters ~	These payload formatters are executed on uplink messages from this end device and take precedence over application level payload formatters.
↑ Integrations	Formatter type
K Collaborators	Use application payload formatter None Javascript GRPC service CayenneLPP Repository
Ov API keys	Formatter parameter *
General settings	<pre>1 function decodelplink(input) [{ 2</pre>
< Hide sidebar	Save changes

2.5 Show data on Application Server

Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:

<u>Step 1</u>: Be sure that your device is programmed and properly connected to the LoRaWAN network.

<u>Step 2</u>: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console --> Applications --> Integrations --> Add Integrations.

Add TagoIO:

Applications > 气象站 > Webhooks > Add > Custom webhook

Template inf	ormation	
	TagolO	
Tago 🖸	Integrate with TagoIO	
	About TagolO 🛛 Documentation 🛛	
Template set Webhook ID*		
	tings	
Webhook ID*	tings	

Authorization:

	ر <u>دا</u> و	dragino 👻	Devices		in an					Authorization + Add Devi
	Home		Devices are the link between external things and the buckets in your account. <u>Back more</u> . Name Last Input Last Output Connector Network Active Bucket linked							
E Devices	60 Buckets	Files	search			search	search		← search	
v>	L		前距超声波	5 minutes ago	Never	Custom The Things Industries	LoRaWAN TTI/TTN v3	• Yes	刻距超声波	3 months ago
Analysis	7 Actions	Cores	LDS03A,眉门	22 minutes ago	Never	Custom The Things Industries	LoRaWAN TTI/TTN v3	• Yes	LDS03A_盾门	3 months ago
Access	Users	% Run	气象站	5 minutes ago	Never	Custom The Things Industries	LoRaWAN TTI/TTN v3	• Yes	气象站	3 months ago
SHBOARD)S	Q 12 III +								
LDS03A_ba	ick door	1								
LMDS200		1								
Weather sta	ation	1								

				🌲 💡 🌇 -
# Home	Weather station			× /
Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Image: Constraint of the sectors Im	Emporature I 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Pumidity I 0 0 0 0 0 0 0 0 0 0 0 0 0	CO2 I 600 600 600 600 600 600 600 60	Light intercedy I 100 000 000 000 000 000 000 00
ELLADS200 I E Weather station I	PM25 I 0 0 0 0 0 0 0 0 0 0 0 0 0	PM0 I	Photosynthetically active radiation I 50 50 50 50 50 50 50 50 50 50	Total solar radiation I 30 50 000 67 00 pm 6200 01 00 am 6300 67 00 am 6 M
	Rainfall of the day E 0 0 0 0 0 0 0 0 0 0 0 0 0	Atmospheric pressure E 100 1010 1010 1010 1010 1010 1010 1010 0300 07.00 pm 0300 07.00 am © pressure	Wind speed E	Wind level I 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Wind direction angle value	Wind direction	Rain and snow detection I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

In TagoIO console (<u>https://admin.tago.io//</u>) , add WSC1-L:

3. Configure WSC1-L via AT Command or LoRaWAN Downlink

Use can configure WSC1-L via AT Command or LoRaWAN Downlink.

- AT Command Connection: See FAQ.
- LoRaWAN Downlink instruction for different platforms:

http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server

There are two kinds of commands to configure WSC1-L, they are:

General Commands.

These commands are to configure:

- ✓ General system settings like: uplink interval.
- ✓ LoRaWAN protocol & radio related command.

They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack(Note**). These commands can be found on the wiki:

http://wiki.dragino.com/index.php?title=End Device Downlink Command

Note**: Please check early user manual if you don't have v1.8.0 firmware.

Commands special design for WSC1-L

These commands only valid for WSC1-L, as below:

3.1 Set Transmit Interval Time

Feature: Change LoRaWAN End Node Transmit Interval.

AT Command: AT+TDC

Command Example	Function	Response
AT+TDC?	Show current transmit Interval	30000 OK the interval is 30000ms = 30s
AT+TDC=60000	Set Transmit Interval	OK Set transmit interval to 60000ms = 60 seconds

Downlink Command: 0x01

Format: Command Code (0x01) followed by 3 bytes time value.

If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.

- Example 1: Downlink Payload: 0100001E // Set Transmit Interval (TDC) = 30 seconds
- Example 2: Downlink Payload: 0100003C // Set Transmit Interval (TDC) = 60 seconds

3.2 Set Emergency Mode

Feature: In emergency mode, WSC1-L will uplink data every 1 minute.

AT Command:

Command Example	Function	Response
AT+ALARMMOD=1	Enter emergency mode. Uplink every 1 minute	ОК
AT+ALARMMOD=0	Exit emergency mode. Uplink base on TDC time	ОК

Downlink Command:

- ♦ 0xE101 Same as: AT+ALARMMOD=1
- ♦ 0xE100 Same as: AT+ALARMMOD=0

3.3 Add or Delete RS485 Sensor

Feature: User can add or delete 3rd party sensor as long they are RS485/Modbus interface, baud rate support 9600. Maximum can add 4 sensors.

AT Command:

AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data , has_CRC, timeout

- Type_Code range: A1 ~ A4
- Query_Length: RS485 Query frame length, Value cannot be greater than 10
- > Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
- Read_Length: RS485 response frame length supposed to receive. Max can receive
- > Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
- has_CRC: RS485 Response crc check (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
- > timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout

Example:

User need to change external sensor use the type code as address code.

With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:

Address Code	Address Code Function Code Start		art Register Data Length			CRC Check Low	CRC Check High
0xA1	0x03	0x00	0x00	0x00	0x01	0x9C	0xAA

The response frame of the sensor is as follows:

Address Code	Function Code Data Lengtl		ength	D	ata	CRC Check Low	CRC Check High
0xA1	0x03	0x00	0x02	0x00	0x0A	0x7C	0xAD

Then the following parameters should be:

- Address_Code range: A1
- Query_Length: 8
- Query_Command: A10300000019CAA
- Read_Length: 8
- > Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
- has_CRC: 1
- timeout: 1500 (Fill in the test according to the actual situation)

So the input command is:

AT+DYSENSOR=A1,8,A10300000019CAA,8,24,1,1500

In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.

Type Code	Length (Bytes)	Measured Value
A1	2	0x000A

Related commands:

AT+DYSENSOR=A1,0 -> Delete 3rd party sensor A1.

AT+DYSENSOR --> List All 3rd Party Sensor. Like below:

Downlink Command:

delete custom sensor A1:

♦ 0xE5A1 Same as: AT+DYSENSOR=A1,0

Remove all custom sensors

♦ 0xE5FF

3.4 RS485 Test Command

AT Command:

Command Example	Function	Response	
AT+RSWRITE=xxxxxx	Send command to 485 sensor Range : no more than 10 bytes	ОК	

Eg: Send command 01 03 00 00 00 01 84 0A to 485 sensor

AT+RSWRITE=0103000001840A

Downlink Command:

♦ 0xE20103000001840A Same as: AT+RSWRITE=0103000001840A

3.5 RS485 response timeout

Feature: Set or get extended time to receive 485 sensor data.

AT Command:

Command Example	Function	Response
AT+DTR=1000	Set response timeout to: Range : 0~10000	ОК

Downlink Command:

Format: Command Code (0xE0) followed by 3 bytes time value.

If the downlink payload=E0000005, it means set the END Node's Transmit Interval to 0x000005=5(S), while type code is E0.

- Example 1: Downlink Payload: E0000005 // Set Transmit Interval (DTR) = 5 seconds
- Example 2: Downlink Payload: E000000A // Set Transmit Interval (DTR) = 10 seconds

3.6 Set Sensor Type

Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values. See <u>definition</u> for the sensor type.

Byte3	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
		A4	A3	A2	A1			
Byte2	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
			Solar	PAR	PM10	PM2.5	Rain	Air
			Radiation				Gauge	Pressure
Byte1	Bit7	Bit6	Radiation Bit5	Bit4	Bit3	Bit2	Gauge Bit1	Pressure Bit0
Byte1	Bit7 Humidity	Bit6 Temperature		Bit4 Rain/Snow	Bit3 illuminance	Bit2 Wind	0	

AT Command:

Command Example	Function	Response
AT+STYPE=80221	Set sensor types	ОК

Eg: The setting command AT+STYPE=802212 means:

Byte3	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
	0	0	0	0	1	0	0	0
Byte2	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	0	0	0	0	0	0	1	0
Byte1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	0	0	1	0	0	0	0	1

So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge, CO2, BAT.

Downlink Command:

♦ 0xE400802212 Same as: AT+STYPE=80221

Note:

1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned

4. Power consumption and battery

4.1 Total Power Consumption

Dragino Weather Station serial products include the main process unit (WSC1-L) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.

4.2 Reduce power consumption

The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.

4.3 Battery

All sensors are only power by external power source. If external power source is off. All sensor won't work.

Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid. External power source can recharge the 1000mAh rechargeable battery.

5. Main Process Unit WSC1-L

5.1 Features

- ✓ Wall Attachable.
- ✓ LoRaWAN v1.0.3 Class A protocol.
- ✓ RS485 / Modbus protocol
- ✓ Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
- ✓ AT Commands to change parameters
- ✓ Remote configure parameters via LoRaWAN Downlink
- ✓ Firmware upgradable via program port
- ✓ Powered by external 12v battery
- ✓ Back up rechargeable 1000mAh battery
- ✓ IP Rating: IP65
- ✓ Support default sensors or 3rd party RS485 sensors

5.2 Power Consumption

WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA

5.3 Storage & Operation Temperature

-20°C to +60°C

5.4 Pin Mapping

5.5 Mechanical

Refer LSn50v2 enclosure drawing in:

https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical Drawing/

5.6 Connect to RS485 Sensors

WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.

Hardware Design for the Converter Board please see:

https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/

6. Weather Sensors

6.1 Rain Gauge -- WSS-01

WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.

WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.

WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol

The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.

WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.

6.1.1 Feature

- RS485 Rain Gauge
- Small dimension, easy to install
- > Vents under funnel, avoid leaf or other things to avoid rain flow.
- ➢ ABS enclosure.
- Horizontal adjustable.

6.1.2 Specification

- Resolution: 0.2mm
- > Accuracy: $\pm 3\%$
- Rainfall strength: 0mm~4mm/min (max 8mm/min)
- Input Power: DC 5~24v
- Interface: RS485
- > Working Temperature: $0^{\circ}C \sim 70^{\circ}C$ (incorrect below 0 degree, because water become ICE)
- Working Humidity: <100% (no dewing)</p>
- Power Consumption: 4mA @ 12v.

6.1.3 Dimension

6.1.4 Pin Mapping

6.1.5 Installation Notice

Do not power on while connect the cables. Double check the wiring before power on. Installation Photo as reference:

Install on Ground:

WSS-01 Rain Gauge include screws so can install in ground directly .

Install on pole:

If user want to install on pole, they can purchase the **WS-K2** : **Bracket Kit for Pole installation**, and install as below:

WS-K2: Bracket Kit for Pole installation:

WSSC-K2 dimension document, please see: https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/

6.2 Wind Speed/Direction -- WSS-02

WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.

WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection

Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.

6.2.1 Feature

- ▶ RS485 wind speed / direction sensor
- PC enclosure, resist corrosion

6.2.2 Specification

- Wind speed range: 0 ~ 30m/s, (always show 30m/s for higher speed)
- \blacktriangleright Wind direction range: 0 ~ 360°
- Start wind speed: ≤ 0.3 m/s
- > Accuracy: \pm (0.3+0.03V) m/s , \pm 1°
- ➢ Input Power: DC 5∼24v
- Interface: RS485
- ➢ Working Temperature: -30°C ~70°C
- Working Humidity: <100% (no dewing)</p>
- Power Consumption: 13mA ~ 12v.
- Cable Length: 2 meters

6.2.3 Dimension

6.2.4 Pin Mapping

6.2.5 Angle Mapping

6.2.6 Installation Notice

Do not power on while connect the cables. Double check the wiring before power on.

The sensor must be installed with below direction, towards North.

6.3 CO2/PM2.5/PM10 -- WSS-03

WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.

WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.

WSS-03 is designed to support the Dragino Weather station solution.

Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.

6.3.1 Feature

- RS485 CO2, PM2.5, PM10 sensor
- > NDIR to measure CO2 with Internal Temperature Compensation
- Laser Beam Scattering to PM2.5 and PM10

6.3.2 Specification

- CO2 Range: 0~5000ppm, accuracy: ±3%F•S (25℃)
- CO2 resolution: 1ppm
- > PM2.5/PM10 Range: $0 \sim 1000 \mu g/m3$, accuracy $\pm 3\% F \cdot S (25^{\circ}C)$
- PM2.5/PM10 resolution: 1µg/m3
- Input Power: DC 7 ~ 24v
- Preheat time: 3min
- Interface: RS485
- Working Temperature:
 - ♦ CO2:0°C~50°C;
 - ♦ PM2.5/PM10: -30 ~ 50°C
- ➢ Working Humidity:
 - \Rightarrow PM2.5/PM10: 15 \sim 80%RH (no dewing)
 - ♦ CO2: 0~95%RH
- Power Consumption: 50mA@ 12v.

6.3.3 Dimension

6.3.4 Pin Mapping

6.3.5 Installation Notice

Do not power on while connect the cables. Double check the wiring before power on.

90mm

6.4 Rain/Snow Detect -- WSS-04

WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.

WSS-04 has auto heating feature, this ensures measurement more reliable.

WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.

6.4.1 Feature

- RS485 Rain/Snow detect sensor
- Surface heating to dry
- > grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion

6.4.2 Specification

- Detect if there is rain or snow
- Input Power: DC 12 ~ 24v
- Interface: RS485
- ▶ Working Temperature: -30° C \sim 70 $^{\circ}$ C
- ➢ Working Humidity: 10∼90%RH
- Power Consumption:
 - \diamond No heating: 12mA @ 12v,
 - ♦ heating: 94ma @ 12v.

6.4.3 Dimension

6.4.4 Pin Mapping

6.4.5 Installation Notice

Do not power on while connect the cables. Double check the wiring before power on.

Install with 15 $^\circ\,$ degree.

6.4.6 Heating

WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15° , WSS-04 starts to heat and stop at stop temperature (default is 25°).

6.5 Temperature, Humidity, Illuminance, Pressure -- WSS-05

WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.

WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main

processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.

6.5.1 Feature

> RS485 Temperature, Humidity, Illuminance, Pressure sensor

6.5.2 Specification

- Input Power: DC 12 ~ 24v
- Interface: RS485
- Temperature Sensor Spec:
 - ♦ Range: -30 ~ 70°C
 - ♦ resolution 0.1 $^{\circ}$ C
 - ♦ Accuracy: ±0.5°C
- Humidity Sensor Spec:
 - ♦ Range: 0 ~ 100% RH
 - ♦ resolution 0.1 %RH
 - ♦ Accuracy: 3% RH
- Pressure Sensor Spec:
 - \Rightarrow Range: 10 \sim 1100hPa
 - ♦ Resolution: 0.1hPa
 - \diamond Accuracy: \pm 0.1hPa
- Illuminate sensor:
 - \Rightarrow Range: 0 \sim 2/20/200kLux
 - ♦ Resolution: 10 Lux
 - ♦ Accuracy: $\pm 3\%$ FS
- ▶ Working Temperature: -30° C \sim 70 $^{\circ}$ C
- ➢ Working Humidity: 10∼90%RH
- Power Consumption: 4mA @ 12v

6.5.3 Dimension

www.dragino.com

6.5.4 Pin Mapping

6.5.5 Installation Notice

Do not power on while connect the cables. Double check the wiring before power on.

6.6 Total Solar Radiation sensor -- WSS-06

WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μ m (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.

The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance

WSS-06 is designed to support the Dragino Weather station solution.

Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.

6.6.1 Feature

- RS485 Total Solar Radiation sensor
- Measure Total Radiation between $0.3 \sim 3 \mu m (300 \sim 3000 nm)$
- > Measure Reflected Radiation if sense area towards ground.

6.6.2 Specification

- Input Power: DC 5 ~ 24v
- Interface: RS485
- > Detect spectrum: $0.3 \sim 3 \mu m$ (300 \sim 3000nm)
- Measure strength range: 0~2000W/m2
- Resolution: 0.1W/m2
- > Accuracy: $\pm 3\%$
- > Yearly Stability: $\leq \pm 2\%$
- \blacktriangleright Cosine response: $\leq 7\%$ (@ Sun angle 10°)
- > Temperature Effect: $\pm 2\%$ ($-10^{\circ}C \sim 40^{\circ}C$)
- ▶ Working Temperature: -40° C \sim 70 $^{\circ}$ C
- ➢ Working Humidity: 10∼90%RH
- Power Consumption: 4mA @ 12v

6.6.3 Dimension

6.6.4 Pin Mapping

6.6.5 Installation Notice

Do not power on while connect the cables. Double check the wiring before power on.

6.7 PAR (Photosynthetically Available Radiation) -- WSS-07

WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.

WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.

WSS-07 is designed to support the Dragino Weather station solution.

Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.

6.7.1 Feature

PAR (Photosynthetically Available Radiation) sensor measure 400 ~ 700nm wavelength nature light's Photosynthetically Available Radiation.

When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.

6.7.2 Specification

- Input Power: DC 5 ~ 24v
- Interface: RS485
- ➢ Response Spectrum: 400∼700nm
- ➤ Measure range: 0~2500µmol/m2•s
- Resolution: 1µmol/m2•s
- ➤ Accuracy: ±2%
- ▶ Yearly Stability: $\leq \pm 2\%$
- ▶ Working Temperature: -30° C \sim 75 $^{\circ}$ C
- ➢ Working Humidity: 10∼90%RH
- Power Consumption: 3mA @ 12v

6.7.3 Dimension

6.7.4 Pin Mapping

6.7.5 Installation Notice

Do not power on while connect the cables. Double check the wiring before power on.

7. FAQ

7.1 What else do I need to purchase to build Weather Station?

Below is the installation photo and structure:

WSC1-L Weather Station Installation Diagram

7.2 How to upgrade firmware for WSC1-L?

Firmware Location & Change log:

https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/

Firmware Upgrade instruction:

https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_pro_ ducts#Hardware_Upgrade_Method_Support_List

7.3 How to change the LoRa Frequency Bands/Region?

User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.

7.4 Can I add my weather sensors?

Yes, connect the sensor to RS485 bus and see instruction: add sensors.

8. Trouble Shooting

9. Order Info

9.1 Main Process Unit

Part Number: WSC1-L-XX

XX: The default frequency band

- ✓ AS923: LoRaWAN AS923 band
- ✓ AU915: LoRaWAN AU915 band
- ✓ EU433: LoRaWAN EU433 band
- ✓ EU868: LoRaWAN EU868 band
- ✓ KR920: LoRaWAN KR920 band
- ✓ US915: LoRaWAN US915 band
- ✓ IN865: LoRaWAN IN865 band
- ✓ CN470: LoRaWAN CN470 band

9.2 Sensors

Sensor Model	Part Number
Rain Gauge	WSS-01
Rain Gauge installation Bracket for Pole	WS-K2
Wind Speed Direction 2 in 1 Sensor	WSS-02
CO2/PM2.5/PM10 3 in 1 Sensor	WSS-03
Rain/Snow Detect Sensor	WSS-04
Temperature, Humidity, illuminance and Pressure 4 in 1 sensor	WSS-05
Total Solar Radiation Sensor	WSS-06
PAR (Photosynthetically Available Radiation)	WSS-07

10. Support

- Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to

support@dragino.com

11. Appendix I: Field Installation Photo

Storage Battery: 12v,12AH li battery

Wind Speed/Direction.

Dragino LoRaWAN Weather Station

Total Solar Radiation sensor

PAR Sensor

CO2/PM2.5/PM10 3 in 1 sensor

Rain / Snow Detect:

Rain Gauge.

www.dragino.com

