Description of the Payload

For Wireless Sensor Node of the Series WILSEN.node

WSN-*-F406-B41-*-02

Support: fa-info@pepperl-fuchs.com Internet: www.pepperl-fuchs.com

General Information on Operating WILSEN devices in a LoRaWAN Environment

Rejoin

A WILSEN device rejoins (= logs in to the LoRa network server [LNS] again) during operation "only if required." Corresponding detection mechanisms are active in the device to detect whether it is still connected to the LNS. If the device is not connected, the WILSEN rejoins the network automatically.

Unconfirmed/Confirmed Messages

By default, the WILSEN devices are set to "unconfirmed messaging". This type of transmission ensures the lowest possible load on the LoRa network. If your application requires a confirmed messaging, you can change the type of messaging in the WILSEN device to "confirmed". For details, refer to the WILSEN.node manual.

Downlink / Remote Control via LoRa

The WILSEN devices are LoRa class A devices.

Besides the typical transmission of uplink messages, the device is able to accept and process downlink messages coming from the LNS. The commands supported by the device can be found in the separate documentation "WILSEN Downlink Description". You can download this from the product details page at www.pepperl-fuchs.com.

General Structure of a LoRaWAN Payload

The general structure of a LoRaWAN payload is as follows:

Commands of physical layer	Commands MAC layer	s of Appli paylo		of MAC r	CRC of physical layer
Application data	package 1	ADP2	ADP3		ADPn
Structure of the application payload data					

Length	Universal Unique identifier (UUID)	Data			
0x06	0x0201	0x41C567C9			

Content of an application data package

The WILSEN.node provides its data and information via three different payloads.

Payload 1

Payload 1 contains the sensor data (excluding GPS position data) and is typically used in all applications in which GPS position data is not required.

The transmission of payload 1 and its frequency are determined by the settings in the "LoRaWAN configuration submenu" of the WILSEN app (see the WILSEN.node manual).

Payload length: 15 bytes

Structure of the application data payload:

ADP1	ADP2	ADP3
Sensor status	Temperature in °C	Battery status

The table below provides details on the individual data packages:

Universally Unique Identifier UUID (16bit)	Data Package Description	Data Type	Data Length (Bytes)	Additional Information
0x0C04	sensor_status	uint8	1	Statuses of the connected frontend sensors
0x0201	temp_celcius	float	4	Temperature in °C
0x5101	battery_vol	uint8	1	Battery status: value is provided in volts/10

Data packet "Sensor_status"

The statuses of the connected frontend sensors are provided in the "Sensor_status" data packet. The data byte is divided between the two sensors as follows:

Sensor_Status = 0bBBBBAAAA

The four bits "A" contain the detailed information on sensor 1, the four bits "B" those on sensor 2.

The sensor status is coded as follows in each of the four bits:

Value	Sensor status	
0b0000	No target detected	
0b0001	Target detected	
0b1000	Error: Short circuit	
0b1001 *	Not connected / Error: Wire break	
0b1010 *	Impermissible current level	

* These statuses are only detectable on WILSEN.node devices with Namur sensor inputs and are therefore only provided on these devices.

Below is an example of this payload:

03 0C 04 00 06 02 01 41 AE 66 66 03 51 01 24

Sensor status

Temperature in °C Battery status

Payload 2 contains the sensor data including GPS position data and is typically used in all applications in which GPS position data is required in addition to the sensor data. Payload 2 can be used in addition to or in place of payload 1.

The transmission of payload 2 and its frequency are determined by the settings in the "GPS configuration submenu" of the WILSEN app (see the WILSEN.node manual).

ADP1	ADP2	ADP3	ADP4	ADP5
Sensor	Temperature in °C	Battery status	Geographic	Geographic
status			latitude	longitude

Payload length: 29 bytes

Structure of the application data packages:

Universally Unique Identifier UUID (16bit)	Data Package Description	Data Type	Data Length (Bytes)	Additional Information
0x0C04	sensor_status	uint8	1	Statuses of the connected frontend sensors
0x0201	temp_celcius	float	4	Temperature in °C
0x5101	battery_vol	uint8	1	Battery status: value is provided in volts/10
0x5001	latitude	uint32	4	Geographic latitude: provided as a decimal value by calculating the degree of latitude/1000000
0x5002	longitude	uint32	4	Geographic longitude: decimal value in longitude/1000000

Data packet "Sensor_status"

The statuses of the connected frontend sensors are provided in the "Sensor_status" data packet. The data byte is divided between the two sensors as follows:

Sensor_Status = 0bBBBBAAAA

The four bits "A" contain the detailed information on sensor 1, the four bits "B" those on sensor 2.

The sensor status is coded as follows in each of the four bits:

Value	Sensor status		
0b0000	No target detected		
0b0001	Target detected		
0b1000	Error: Short circuit		
0b1001 *	Not connected / Error: Wire break		
0b1010 *	Impermissible current level		

* These statuses are only detectable on WILSEN.node devices with Namur sensor inputs and are therefore only provided on these devices.

Below is an example of this payload:

03 0C 04 00 06 02 01 41 AE 66 66 03 51 01 24 06 50 01 02 F1 C6 08 06 50 02 00 7D 21 B3

Note

If the device was unable to determine a valid GPS position, the following values are transmitted in the payload:

- Longitude: 0.000000
- Latitude: 0.000000

Payload 3

The sensor transmits payload 3 ("heartbeat") every 24 hours, regardless of payload 1 and payload 2. Payload 3 contains information about the sensor in the form of counter readings for the frequency of front-end sensor queries, the number of LoRa transmissions, the number of times the GPS position was determined, and the battery status.

The payload is structured is as follows:

ADP1	ADP2	ADP3	ADP4	ADP5
P+F serial	Counter reading for	Counter reading for GPS	Counter reading frontend	Battery status
number	LoRa transmissions	position determination	sensor queries	

Payload length: 38 bytes

Structure of the application data packages:

Universally Unique Identifier UUID (16 bit)	Data Package Description	Data Type	Data Length (Bytes)	Additional Information
0x2A25	SerialNr	uint8(14)	14	P+F serial number, ASCII-coded
0x3101	lora_count	uint16	2	Counter reading for LoRa transmissions: number of LoRa transmissions
0x3102	gps_count	unit16	2	Counter reading for GPS position determination: number of times the GPS position was determined
0x3104	sensor_count	uint32	4	Counter reading frontend sensor queries: Number of status queries performed for the connected front-end sensors
0x5101	battery_vol	uint8	1	Battery status: value is provided in volts/10

Below is an example of this payload:

10 2A 25 34 38 30 30 30 30 30 30 30 36 33 39 39 39 39 04 31 01 00 9E 04 31 02 00 02 06 31 04 00 00 0D 2F 03 51 01 24

Note

This payload transmission cannot be modified. This payload is transmitted as a sign of life (=heartbeat) for the sensor even when the LoRa and GPS transmission intervals are switched off.