

Respiratory Sensor

Technical Reference Manual

Document Type:	Technical Reference Manual
Document Number:	T0006922_TRM
Document Version:	0.13
Product Name:	Respiratory Sensor
Product Code:	T0006923
Version	Module <i>A</i> , PCBA <i>A1</i> , SW <i>0.1.16</i>
Release Date:	April 12, 2021

PROPRIETARY:

The information contained in this document is the property of TEKTELIC Communications Inc. Except as specifically authorized in writing by TEKTELIC, the holder of this document shall keep all information contained herein confidential, and shall protect the same in whole or in part from disclosure to all third parties.

© 2021 TEKTELIC Communications Inc., all rights reserved. All products, names, and services are trademarks and registered trademarks of their respective companies.

DISCLAIMER:

Material contained in this document is subject to change without notice. The material herein is solely for information purposes and does not represent a commitment by TEKTELIC or its representatives. TEKTELIC has prepared the information contained in this document solely for use by its employees, agents, and customers. Dissemination of this information and/or concepts to other parties is prohibited without the prior written consent of TEKTELIC. In no event will TEKTELIC be liable for any incidental or consequential damage in connection with the furnishing, performance or use of this material.

TEKTELIC reserves the right to revise this publication in accordance with formal change control procedures defined by TEKTELIC.

Table of Contents

Lis	t of 1	Tables		3
Lis	t of F	igure	s	4
Ac	rony	ms an	d Glossary	5
1	Int	roduc	tion	7
2	Ор	eratio	onal Description	8
	2.1	Ove	rview	8
	2.2 Respiratory Sensor Battery Operation			9
	2.3	LED	Patterns	9
3	UL	Paylo	ad Formats	11
	3.1	Peri	odic Report of Battery and Health Signs	11
	3.2	Peri	odic Report of Metadata	13
	3.3	Res	oonse to Configuration and Control Commands	13
4	DL	Paylo	ad Formats	14
	4.1	Cha	nge the Sensor Mode of Reporting	14
	4.2	Con	figuration and Control Commands	14
	4.2	2.1	LoRaMAC Configuration	15
	4.2	2.2	Periodic Tx Configuration	17
	4.2	2.3	BT (Body Temperature) Configuration	17
	4.2	2.4	RR (Respiratory Rate) and CE (Chest Expansion) Configuration	18
	4.2	2.5	Accelerometer Configuration	19
	4.2	2.6	HR (Heart Rate) Configuration	20
	4.2	2.7	Command and Control	21
5	Re	spirat	ory Sensor and FEA Interface	24
	5.1	UL	Direction	24
	5.2	DL [Direction	24
Re	ferer	nces		25

List of Tables

Table 1-1: Respiratory Sensor HW Model	7
Table 1-2: Respiratory Sensor Region Specific Variants	7
Table 2-1: Respiratory Sensor Information Streams	9
Table 2-2: Respiratory Sensor LED Patterns	9
Table 3-1: UL Information Streams	
Table 3-2: UL Payload Fields	
Table 4-1: DL Information Streams	
Table 4-2: LoRaMAC Configuration Registers	
Table 4-3: Default Maximum Tx Power in Different Regions	
Table 4-4: Default Values of Rx2 Channel Frequency and DR Number in Different Regions	
Table 4-5: Periodic Tx Configuration Registers	
Table 4-6: BT Configuration Registers	
Table 4-7: RR and CE Configuration Registers	
Table 4-8: Accelerometer Configuration Register	
Table 4-9: HR Configuration Registers	
Table 4-10: Command-and-Control Registers	
Table 4-11: LoRaWAN Regions and Region Numbers	

List of Figures

Figure 2-1: State machine of the Respiratory Sensor.	9
Figure 3-1: The uplink payload format	11
Figure 4-1: The format of a DL configuration and control message block.	14

Acronyms and Glossary

ABP	. activation by personalization
ADR	. adaptive data rate
AF	. activity factor
App SW	. Respiratory Sensor application SW
В	. byte
bpm	. breath(s) per min, beat(s) per min
BT	. body temperature
CE	. chest expansion
CRC	. cyclic redundancy check
DL	. downlink
DR	. data rate
EIRP	. effective isotropically radiated power
FEA	. front-end application
flash	. non-volatile memory of the MCU, containing the sensor configuration
FW	. firmware
<i>g</i>	. gravity (unit of acceleration $pprox$ 9.8 m/s ²)
HR	. heart rate
HRM	. HR monitor
ID	. identity/identifier
ют	. Internet of things
JSON	. JavaScript object notation
LED	. light-emitting diode
LoRa	. a patented "long-range" IoT technology acquired by Semtech
LoRAMAC	. LoRaWAN MAC
LoRaWAN	. LoRa wide area network (a network protocol based on LoRa)
LSb	. least significant bit
МАС	. medium access control
МСИ	. microcontroller unit
mg	. milli-g
min	. minute(s)
MSb	. most significant bit
MSB	. most significant byte
NA	. North American
NS	. network server
ОТА	. over-the-air
ОТАА	. OTA activation
POST	. power-on self-test
RAM	. random-access memory
RBT	. respiratory belt transducer

<i>RF</i>	radio frequency
<i>RR</i>	respiratory rate
<i>R/W</i>	read/write
<i>Rx</i>	receiver
sec	second(s)
<i>SW</i>	software
TBD	to be defined
transducer	a sensing element in the Respiratory Sensor, such as the accelerometer
TRM	technical reference manual (this document)
Тх	transmitter
<i>UA</i>	urgent attention
UL	uplink
ver	version

1 Introduction

This document describes the SW functionality, LoRa IoT UL (uplink) and DL (downlink) payloads, and configuration settings supported by the Respiratory Sensor, which is developed by TEKTELIC Communications Inc. This document assumes an understanding of the NS (network sensor) and its command interfaces. The Respiratory Sensor UL data are finally accessed and presented to the end user by a FEA (front-end application). The end user can also use the FEA to send DL commands to the Respiratory Sensor. This document also describes the interface between the Respiratory Sensor and the FEA.

The Respiratory Sensor is a light and small, battery powered LoRaWAN sensor that is worn around the chest (upper torso), and monitors and periodically reports several health signs of the person, including the BT (body temperature), RR (respiratory rate), CE (chest expansion), position, HR (heart rate), and activity status, which can potentially help at (early) detection of a health issue. The Respiratory Sensor also measures and periodically reports the remaining battery lifetime.

The Respiratory Sensor has two red and green LEDs, which show system activities or states. It also has an adjustable strap for different chest sizes. The strap is supposed to be worn comfortably, but not too loose at deep exhalation.

The Respiratory Sensor is also equipped with an accelerometer that is used to measure the body position or detect a surge in physical activity.

Table 1-1 shows the HW variant available for the Respiratory Sensor. Table 1-2 lists the Respiratory Sensor variants for the different RF regions identified by the LoRa Alliance [1]—also see [1] for the Tx and Rx bands in each LoRaWAN region. As shown in Table 1-2, the different RF variants use the same HW; they are distinguished through different, specialized FW.

Table 1-1: Respiratory Sensor HW Model

Product Code	Description
T0006923	Respiratory Sensor Module

Table 1-2: Respiratory Sensor Region Specific Variants

LoRaWAN RF Variant	Order Code
EU868	XXXXXEU868
US915	XXXXXUS915
AS923	XXXXXAS923
AU915	XXXXXAU915
IN865	XXXXXIN865
KR920	XXXXXKR920
RU864	XXXXXRU864

2 Operational Description

2.1 Overview

The Respiratory Sensor measures the **remaining battery lifetime**, **BT (body temperature)**, **RR (respiratory rate)**, **CE (chest expansion)**, **position** (body angle), and **HR (heart rate)**, and **AF (activity factor)**. Here is the measuring and reporting pattern of the Respiratory Sensor in the **normal mode**:

- 1. Remaining Battery Lifetime: Measured and reported every norm report period min.
- 2. BT: Measured every min, an average is reported every norm report period min.
- 3. RR: Measured every min, an average is reported every norm report period min.
- 4. CE: Measured every min, an average is reported every norm report period min.
- 5. Position: Measured and reported every norm_report_period min.
- 6. HR: Measured and reported every norm report period min.
- 7. AF: Measured since last report, and reported every norm_report_period min.

norm_report_period is the normal mode report period (Section 4.2.2).

The **BT** is the body temperatures measured from the thermistor attached to the body.

The **AF** is an indication for the intensity of the physical activity, in units of *g* (gravity), the person has had since the last report. The FEA can map **AF** to three levels of physical activity, Low, Med, High, based on some predefined thresholds.

The Respiratory Sensor goes into the **UA (urgent attention) mode** after receiving a command from the FEA to do so. Here is the measuring and reporting pattern of the Respiratory Sensor in the UA mode:

- 1. Remaining Battery Lifetime: Measured and reported every ua report period min.
- 2. BT: Measured every min, an average is reported every ua report period min.
- 3. RR: Measured every min, an average is reported every ua_report_period min.
- 4. **CE:** Measured every min, an average is reported every ua_report_period min.
- 5. Position: Measured and reported every ua_report_period min.
- 6. HR: Measured and reported every ua_report_period min.
- 7. AF: Measured since last report, and reported every ua_report_period min.

ua report period is the UA mode report period (Section 4.2.2).

Both the sensor user and FEA user can cancel the UA mode. When the UA mode is cancelled, the sensor goes into the normal mode. The FEA user can cancel UA by sending a command from the FEA to put the sensor into the normal mode.

The temperature **BT** is *always* measured every min. If a temperature measurement **BT** lies outside the operational range 30°C to 42°C, the Respiratory Sensor goes into the **battery saving mode**, where nothing is reported, and except for the temperature **BT**, nothing is measured either. As soon as a temperature measurements **BT** lies inside the operational range, the Respiratory Sensor goes into the **normal mode**.

Figure 2-1 Illustrates the state machine of the Respiratory Sensor.

Figure 2-1: State machine of the Respiratory Sensor.

The UL and DL information streams supported by the SW have been summarized in Table 2-1.

Table 2-1: Respirato	ory Sensor li	nformation Streams
----------------------	---------------	--------------------

Stream Direction	Data Type	Sent on LoRaWAN Port
UL (Sensor to NS)	Periodic Report of Battery and Health Signs	10
	Periodic Report of Metadata	100
	Response to Configuration and Control Commands	100
DL (NS to Sensor)	Change the Sensor Mode of Reporting	10
	Configuration and Control Commands	100

2.2 Respiratory Sensor Battery Operation

The Respiratory Sensor is equipped with a replaceable CR2477 coin-cell battery with a nominal capacity of 1000 mAh. The Respiratory Sensor estimated lifetime is 3 months in the **normal mode**. An estimate for the remaining battery lifetime in percentage is included in every sensor report. When the remaining battery capacity estimate reaches 5% or less, a red LED pattern is activated to indicate this to the sensor user.

2.3 LED Patterns

The Respiratory Sensor has a red and a green LED. Table 2-2 specifies LED patterns for different events.

Function	LED Pattern
App SW Activities	 Both LEDs are turned off when the sensor is powered on, then they get turned on when the POST (power-on self-test) begins.

Table 2-2: Respiratory Sensor LED Patterns

	2. When the POST ends, if the POST passed/failed, the green/red LED flashes ON-OFF-
	ON-OFF-ON-OFF-ON-OFF-ON-OFF (i.e. 5 times), with each ON or OFF being 50 ms.
	Both LEDs stay turned OFF after this until the joining procedure starts.
	3. Joining:
	a) Green LED is toggled ON and OFF every 50 ms for the first hour. Then it flashes
	ON-OFF-ON-OFF (i.e. twice) with each ON or OFF being 50 ms, every 10 sec.
	b) Red LED flashes once for 25 ms right after transmitting a JOIN REQUEST, but for
	100 ms right after receiving a JOIN ACCEPT.
	4. Joined: Red LED flashes once for 25 ms right after transmitting an UL. Green LED
	flashes once for 25 ms right after receiving a DL.
Low Battery Indication	Red LED flashes 0.6 sec with 20ms-ON-80ms-OFF pattern, every 6 sec for 6-10% battery.
	Red LED flashes 0.6 sec with 20ms-ON-80ms-OFF pattern, every 3 sec for 1-5% battery.

3 UL Payload Formats

The UL streams (from the Respiratory Sensor to the NS) supported by the App SW are shown in Table 3-1, and are explained in Sections 3.1–3.3.

Data Type	Sent on LoRaWAN Port
Periodic Report of Battery and Health Signs	10
Periodic Report of Metadata	100
Response to Configuration and Control Commands	100

Table 3-1: UL Information Streams

3.1 Periodic Report of Battery and Health Signs

For simplicity and power efficiency, a fixed and short payload format, as shown in Figure 3-1, is considered for the reports. The reports are sent on *LoRaWAN port 10*.

Encoding the UL (how the sensor SW builds an uplink): As shown in Figure 3-1, the following is how the uplink report is built by the SW:

- 1. The Battery Status byte is the remaining battery capacity, with 1 to 254 showing 1% to 100%. In fact, the remaining battery capacity of *C* in percentage is converted to $\left[\frac{253}{99}(C-1)+1\right]$, where [.] is the round to the nearest integer function. If no valid measurement is available, the Battery Status byte is set to 0xFF.
- 2. The BT byte is obtained as $\max([20 \times (T 30)], 0)$, where [.] is the round to the nearest integer function, and where T is the temperature measured from thermistor 1 in °C. If no valid measurement is available, the BT byte is set to 0xFF. A valid T is a temperature between bt_limits.low and bt limits.high, inclusive (see Section 4.2.2.1).
- 3. The RR byte is the measured RR in bpm (1 LSb/bpm). If no valid measurement is available, the RR byte is set to 0xFF.
- 4. The status of the UA mode is encoded in the UA Bit (0/1 = mode inactive/active).
- 5. The 6-bit CE is the measured CE in percentage (1 LSb/0.2%), clipped from above at 12%. If no valid measurement is available, the 6-bit CE is set to 0x3F.
- 6. The 7-bit Position is an unsigned angle from 0° to 90°, with 0° corresponding to the sensor user lying down. If no valid measurement is available, the 7-bit Position is set to 0x7F.
- 7. The HR byte is the measured HR in bpm. If no valid measurement is available, the HR byte is set to 0xFF.
- 8. The AF byte shows the intensity of the physical activity since the last report (1 LSb/0.01 g), clipped from above at 2.5 g. If no valid measurement is available, the AF byte is set to 0xFF.

Battery Capacity	BT	RR	UA Bit RFU Bit CE	RFU	RFU Bit	Position	HR	RFU	AF
1 byte	1 byte	1 byte	6 bits	1 byte		7 bits	1 byte	1 byte	1 byte

Figure 3-1: The uplink payload format.

Table 3-2 shows a summary of the UL payload fields.

Field	Size	Data Format	JSON Variable (Type, Unit)
Battery Status	1 B	• = $\left[\frac{253}{22}(C-1)+1\right]$, C = remaining battery	remaining_battery_capacity
		capacity in %	(unsigned, %)
		• = 255 if no measurement available	
ВТ	1 B	• = max($[20 \times (T - 30)], 0$), T_1 = Body	bt
		temperature from thermistor 1 in °C	(unsigned, °C)
		• = 255 if no valid T available	
RR	1 B	• = RR in bpm	rr
		• $= 255$ if no RR is available	(unsigned, bpm)
UA Mode Status	1 b	• 0 = UA mode inactive	ua
		• 1 = UA mode active	(unsigned, no unit)
CE	6 b	• = $[5 \times min(CE, 12)]$, CE = chest expansion in %	се
		• $= 63$ if no valid CE available	(unsigned, %)
Position	7 b	• = Position in ° (deg)	position
		ullet = 127 if no position available	(unsigned, °)
HR	1 B	• = HR in bpm	hr
		• $= 255$ if no HR available	(unsigned, bpm)
AF	1 B	• = $[100 \times \min(A, 2.5)], A = \text{Activity intensity in}$	af
		g	(unsigned, g)
		• = 255 if no A available	

Table 3-2: UL Payload Fields

Example: Normal mode of reporting, remaining battery capacity = 92%, BT = 37.216°C, RR = 12 bpm, CE = 1%, position = 85°, HR = 72 bpm, activity intensity = 0.253 g is encoded as 0x EA 90 0C 05 FF 55 48 FF 19.

Decoding the UL (how the received uplink is decoded): Considering Figure 3-1, the following is how the received uplink on port 10 is decoded:

- 1. The remaining battery capacity in percentage is obtained as $\left[\frac{99}{253}(B-1)+1\right]$, where *B* is the unsigned integer value of the "Battery Status" byte, and where [.] is the round to the nearest integer function. A value of B = 255 means no valid battery status is available.
- 2. The BT in °C, with two decimal digits, is obtained as t/20 + 30, where t is the unsigned integer value of the 8-bit BT. A value of t = 255 means no valid BT is available.
- 3. The RR in bpm is obtained as the unsigned integer value of the 8-bit RR. A value of 255 means no valid RR is available.
- 4. The UA Bit shows the UA mode status: 0/1 = mode inactive/active.
- 5. The CE in percentage is obtained as the unsigned integer value of the 6-bit CE divided by 5. A value of 63 means no valid CE is available.

- 6. The body position in degrees is obtained as the unsigned integer value of the 7-bit Position. A value of 127 means no valid body position is available.
- 7. The HR in bpm is obtained as the unsigned integer value of the 8-bit HR. A value of 255 means no valid HR is available.
- 8. The physical activity intensity in mg, with two decimal digits, is obtained as $10 \times AF_2$, where AF_2 is the unsigned integer value of the 8-bit AF₂. A value of $AF_2 = 255$ means no AF₂ is available.

Example: Base64 tp8PI/8IN/8D or hex B6 9F 0F 97 FF 08 37 FF 03 is decoded as UA mode of reporting, remaining battery capacity = 72%, BT = 37.95°C, RR = 15 bpm, CE = 4.6%, position = 8°, HR = 55 bpm, activity intensity = 30 mg.

3.2 Periodic Report of Metadata

The Respiratory Sensor periodically reports some metadata to make it available to the FEA for display purposes. Currently, this metadata includes the value of register 0x71, which is the Respiratory Sensor FW version and LoRaWAN region number (see Section 4.2.2.14.2.7). As this information is the value of a Respiratory Sensor register, it is reported on *LoRaWAN port 100*. The report format is the same as reporting the value of any other register (see Section 3.3). The frame payload has 5 bytes in the following format:

0x 71 XX XX XX YY

where "XX XX XX" is the Respiratory Sensor App SW version, and "YY" is the LoRaMAC region number, as specified in Section 4.2.7.

3.3 Response to Configuration and Control Commands

The Respiratory Sensor responses to DL configuration and control commands (which are sent on LoRaWAN port 100) are sent in the UL on *LoRaWAN port 100*. These responses include,

- returning the value of a configuration register in response to a DL inquiry; and
- writing to a configuration register.

In the former case, the sensor responds by the address and value of each of the registers under inquiry (this can be in one or more consecutive UL packets depending on the maximum frame payload size allowed). In the latter case, the sensor responds with a CRC32 of the entire DL payload (which may be a combination of read and write commands) as the first 4 bytes of the UL frame. If the DL payload has also had read commands, the 4 CRC32 bytes are followed by the address and value of each of the registers under inquiry (like the sensor response in the former case).

4 DL Payload Formats

The DL streams (from the NS to the Respiratory Sensor) supported by the App SW are shown in Table 4-1, and are explained in Sections 4.1 and 4.2.

Table 4-1: DL Information Streams

Data Type	Sent on LoRaWAN Port
Change the Sensor Mode of Reporting	10
Configuration and Control Commands	100

4.1 Change the Sensor Mode of Reporting

There are DL commands sent to the sensor that instructs the sensor to go to the normal mode of reporting or to the UA mode of reporting. These commands are sent on *LoRaWAN port 10*:

- 1. 0x 00 01 00: Go to the normal mode
- 2. 0x 00 01 FF: Go to the UA mode

4.2 Configuration and Control Commands

A single DL configuration and control message can contain multiple command blocks, with a possible mix of read and write commands. Each message block is formatted as shown in Figure 4-1. A big-endian format (MSB and MSb first) is always followed.

The Register Address is used to access various configuration parameters. These addresses are bound between 0x00 and 0x7F.

Bit 7 of the first byte determines whether a read or write action is being performed, as shown in Figure 4-1. All read commands are one-byte long. Data following a read access command will be interpreted as a new command block. Read commands are processed last. For example, in a single DL message, if there is a read command from a register and a write command to the same register, the write command is executed first.

Figure 4-1: The format of a DL configuration and control message block.

All DL configuration and control commands are sent on *LoRaWAN port 100*.

When a write command is sent to the Respiratory Sensor, the Respiratory Sensor immediately responds with a CRC32 of the entire DL payload as the first 4 bytes of the UL frame on *LoRaWAN port 100* (also see Section 3.3).

DL Configuration and Control Commands fall into one of the following categories and are discussed in Sections 4.2.1–4.2.7:

- LoRaMAC Configuration
- Periodic Tx Configuration
- BT Configuration
- RR and CE Configuration
- Accelerometer Configuration
- HR Configuration
- Command and Control

4.2.1 LoRaMAC Configuration

LoRaMAC options can be configured using DL commands. These configuration options change the default MAC configuration that the Respiratory Sensor loads on start-up. They can also change certain run-time parameters. Table 4-2 shows the LoRaMAC configuration registers. All the registers have R/W (read/write) access. In this table, the bit indexing scheme is as shown in Figure 4-1.

Address	Value	Size	Description	JSON Variable (Type, Unit)	Default
					Value
0x10	Join Mode	2 B	• Bit 15:	loramac_join_mode: <value></value>	0x 80 00
			0/1 = ABP/OTAA mode	(unsigned, no unit)	
			 Bits 0-14: Ignored 		
0x11	Options	2 B	• Bit 0:	loramac_opts {	0x 00 0E
			0/1 =	confirm_mode: <value>, (unsigned, no unit)</value>	
			Unconfirmed/Confirmed UL	()	
			 Bit 1 = 1 (read-only): 	<pre>sync_word: <value>, (upgigned, no upit)</value></pre>	
			0/1 = Private/Public Sync	(unsigned, no unic)	
			Word	duty_cycle: <value>,</value>	
			• Bit 2:	(unsigned, no unit)	
			0/1 = Disable/Enable Duty	adr: <value></value>	
			Cycle	(unsigned, no unit)	
			• Bit 3:	}	
			0/1 = Disable/Enable ADR		
			• Bits 4-15: Ignored		

Table 4-2: LoRaMAC Configuration Registers

0x12	DR and Tx Power ¹	2 B	 Bits 8-11: Default DR number Bits 0-3: Default Tx power number Bits 4-7, 12-15: Ignored 	<pre>loramac_dr_tx { dr_number: <value>, (unsigned, no unit) tx_power_number: <value> (unsigned, no unit) }</value></value></pre>	0x 00 00 (Tx Power 0 means max power, as per Table 4-3)
0x13	Rx2 Window	5 B	 Bits 8-39: Channel frequency in Hz for Rx2 Bits 0-7: DR for Rx2 	<pre>loramac_rx2 { frequency: <value>, (unsigned, Hz) dr_number: <value> (unsigned, no unit) }</value></value></pre>	As per Table 4-4

Note: Modifying these values only changes them in the Respiratory Sensor. Options for the Respiratory Sensor in the NS also need to be changed in order to not strand a Respiratory Sensor. Modifying configuration parameters in the NS is outside the scope of this document.

RF Region Max Tx EIRP [dBm] EU868 16 US915 30 AS923 16 AU915 30 IN865 30 KR920 14 RU864 16

Table 4-3: Default Maximum Tx Power in Different Regions

Table 4-4: Default Values of Rx2 Channel Frequency and DR Number in Different Regions

RF Region	Channel Frequency [Hz]	DR Number
EU868	869525000	0
US915	923300000	8
AS923	923200000	2
AU915	923300000	8
IN865	866550000	2
KR920	921900000	0
RU864	869100000	0

Examples:

- Enable ADR, disable Duty Cycle, make UL confirmed:
 - DL payload: 0x 91 00 0B
- Set default DR number to 3, default Tx power number to 4:

¹ Tx power number *m* translates to the maximum Tx power, which is a function of the LoRaWAN RF region, minus $2 \times m$ dB.

o DL payload: 0x 92 03 04

4.2.2 Periodic Tx Configuration

Table 4-5 shows the configuration registers for the Respiratory Sensor periodic Tx operation. This includes periodic transmissions in the normal mode, UA mode, and rest mode (Sections 2.1 and 3.1), as well as periodic transmission of metadata (Section 3.2). All registers have R/W access.

Address	Name	Size	Description	JSON Variable (Type, Unit)	Default
					Value
0x20	Normal Mode	1 B	 Report period in the 	<pre>norm_report_period: <value></value></pre>	0x 05
	Report Period		normal mode (1 min/LSb)	(unsigned, min)	
			 Acceptable values: > 0 		
			 0: Invalid and ignored 		
0x21	UA Mode	1 B	 Report period in the UA 	<pre>ua_report_period: <value></value></pre>	0x 01
	Report Period		mode (1 min/LSb)	(unsigned, min)	
			 Acceptable values: > 0 		
			 0: Invalid and ignored 		
0x23	Metadata	2 B	 Report period of 	<pre>meta_report_period: <value></value></pre>	0x 05 A0
	Report Period		metadata (1 min/LSb)	(unsigned, min)	
			 Acceptable values: 		
			Everything		
			 0: Disables metadata 		
			periodic report		

Table 4-5: Periodic Tx Configuration Registers

4.2.2.1 Dependencies and Constraints

Not all Respiratory Sensor App SW configuration combinations are possible. This is to keep the sensor sanity in doing what it is supposed to do. The following constraint is applied:

1. ua report period \leq norm report period

An attempt to change the configuration parameters in violation of the above constraints is ignored by the App SW.

4.2.3 BT (Body Temperature) Configuration

Table 4-6 shows the configuration registers for measuring BT. All the registers have R/W access.

The coefficients A0, A1, A2 shown in Table 4-6 are used in the conversion formula, from the ADC reading to the BT.

bt_count_threshold shows the number of consecutive temperature readings BT outside or inside the temperature limits bt_limits.low and bt_limits.high needed for a transition to the battery saving or normal mode to occur. Recall that the temperature is always measured every minute by the sensor (see Section 2.1). A value of 0 for bt_count_threshold will disable the battery saving mode, meaning that the sensor will never transition to this mode.

The OTA reported body temperatures are actually the output of a moving average filter of length bt_ma_win_len. The filter is applied on per-minute temperature samples (as the temperature samples are always taken every minute), only for the purpose of reporting temperatures OTA; the filter is not applied on the samples used to decide transition into or out of the battery saving mode (as controlled by the parameters bt_count_threshold, bt_limits.low, and bt_limits.high explained above).

Address	Name	Size	Format	JSON Variable (Type, Unit)	Default Value
0x34	A0 Coefficient	8 B	 Double-precision floating-point 	<pre>bt_a0: <value> (unsigned, °C)</value></pre>	86.6
0x35	A1 Coefficient	8 B	Double-precision floating-point	<pre>bt_a1: <value> (unsigned, °C)</value></pre>	-121.39
0x36	A2 Coefficient	8 B	 Double-precision floating-point 	<pre>bt_a2: <value> (unsigned, °C)</value></pre>	32.916
0x37	Temperature Count	1 B	• 1-255: Number of consecutive	bt_count_threshold	1
	Threshold		temperatures to check to go	(unsigned, no unit)	
			into/out of battery saving mode		
			• 0: Disables battery saving		
			mode		
0x38	Temperature Limits	2 B	Bits 8-15: High temperature	<pre>bt_limits {</pre>	0x 2A 1E
			limit (unsigned, 1°C/LSb)	high: <value>,</value>	
			• Bits 0-7: Low temperature limit	(unsigned, ^C)	
			(unsigned, 1°C/LSb)	low: <value></value>	
			 High limit ≤ Low limit: Invalid 	(unsigned, $^{\circ}$ C)	
			and ignored	}	
0x39	Temperature	1 B	• Temperature moving average	bt_ma_win_len:	0x 1E
	Moving Average		window length in number of	<value></value>	
	Window Length		samples (minutes)	(unsigned, no unit)	
			• 0: Invalid and ignored		

Table 4-6: BT Configuration Registers

4.2.4 RR (Respiratory Rate) and CE (Chest Expansion) Configuration

The RBT is sampled at a fixed rate of 4 Hz. The samples collected over 1 min are analyzed to derive a per-min RR. The final RR is obtained by averaging over valid per-min RRs of the last rbt_window_size min. A valid per-min RR is the one that lies between rr_limits.low and rr_limits.high, inclusive.

The CE is also derived from the RBT samples by first calculating a per-minute CE from a valid per-min RR, conversion factor ce_conversion_factor, and statistical function ce_stat_function. The final CE value is calculated by averaging over valid per-min CEs over the last rbt window size minutes.

Table 4-7 shows the RR and CE configuration registers. These registers have R/W access.

Table 4-7: RR and CE Configuration Registers

Address	Name	Size	Description	JSON Variable (Type, Unit)	Default Value
0x3B	RR Window Size	1 B	 Size of the RR window (1 	<pre>rr_window_size: <value></value></pre>	3
			sample/LSb)	(unsigned, no unit)	
			 Acceptable values: 1-10 		
			 Other values: Invalid and 		
			ignored		
0x3C	RR Limits	2 B	• Bits 8-15: Max RR	rr_limits {	0x 3C 07
			(unsigned, 1 bpm/LSb)	high: <value>,</value>	
			• Bits 0-7: Min RR (unsigned,	(unsigned, bpm)	
			1 bpm/LSb)	low: <value></value>	
			• Max RR \leq Min RR: Invalid	(unsigned, bpm)	
			and ignored	}	
0x3D	CE Conversion	8 B	 Double-precision floating- 	ce_conversion_factor:	30.85
	Factor		point	<value></value>	
			-	(unsigned, %/V)	
0x3E	CE Statistical	1 B	• 0 = Average	ce_stat_function:	0
	Function		• 1 = Min	<value></value>	
			• 2 = Max	(unsigned, no unit)	

4.2.5 Accelerometer Configuration

The accelerometer transducer in the Respiratory Sensor is used to determine the position and activity intensity of the sensor user.

The accelerometer is always turned on in the Low-power mode with all the axes (X, Y, Z) enabled, except in the battery saving mode, where it is put into the power-down mode.

Table 4-8 shows the accelerometer configuration register. This register has R/W access. In this table, the bit indexing scheme is as shown in Figure 4-1.

Address	Name	Size	Description	JSON Variable (Type, Unit)	Default
					Value
0x40	Accelerometer	1 B	• Bits 0-2 (Sample Rate):	accelerometer_sensitivity	0x 12
	Sensitivity		0: Invalid and ignored	{	
			1/ 2 /3/4/5/6/7 =	sample_rate: <value>,</value>	
			1/ 10 /25/50/100/200/400 Hz	(unsigned, nz)	
			 Bits 4-5 (Measurement 	measurement_range:	
			Range):	<value></value>	
			0/ 1 /2/3 = ±2/ ±4 /±8/±16 g	(unsigned, g)	
			• Bit 3/6/7: Ignored	}	

Table 4-8: Accelerometer Configuration Register

4.2.5.1 Sensitivity

The Sensitivity register is used to set the sample rate and measurement range of the accelerometer.

When powered on, the accelerometer always samples the transducer element at a fixed sample rate. To capture an acceleration event, the physical event needs to last longer than the sample period. Larger sample rates have a shorter period and can therefore resolve shorter impacts. However, sampling the transducer at a larger rate increases the power usage, impacting the battery life. This is both because of the more accelerometer current draw for a larger sample rate, and because at a larger sample rate, the MCU needs to wake up more often and process more samples coming out of the accelerometer.

The measurement range or full scale shows the dynamic range of accelerations that can be monitored on any axis. When active, the accelerometer is always put into the Low-power mode, which means that the output acceleration values on any given axis (X, Y, Z), is an 8-bit signed number. This means that the measurement ranges $\pm 2 g$, $\pm 4 g$, $\pm 8 g$, $\pm 16 g$ becomes corresponding to typical transducer output precisions of 16 mg, 32 mg, 64 mg, 192 mg, respectively².

4.2.6 HR (Heart Rate) Configuration

The HR reading is obtained from the HRM (HR monitor) transducer, by averaging over valid per-min HRs (those between 50 and 200 bpm) of the last hr_window_size min.

Table 4-9 shows the HR configuration registers. All the registers have R/W access. In this table, the bit indexing scheme is as shown in Figure 4-1.

Address	Name	Size	Description	JSON Variable (Type, Unit)	Default Value
0x50	R to R Window Averaging	1 B	• Bits 0-3:	rtor_wndw: <value></value>	2
			Acceptable values:	(unsigned, no unit)	
			0, 1,, 11		
			Other values:		
			Invalid and ignored		
			 Bits 4-7: Ignored 		
0x51	R to R Gain	1 B	• Bits 0-3:	rtor_gain: <value></value>	6
			Acceptable values:	(unsigned, no unit)	
			0, 1,, 15		
			• Bits 4-7: Ignored		
0x52	R to R Peak Averaging Weight	1 B	• Bits 0-1:	rtor_pavg: <value></value>	1
	Factor		Acceptable values:	(unsigned, no unit)	
			0, 1, 2, 3		
			 Bits 2-7: Ignored 		
0x53	R to R Peak Threshold Scaling	1 B	• Bits 0-3:	rtor_ptsf: <value></value>	1
	Factor		Acceptable values:	(unsigned, no unit)	
			0, 1,, 15		
			 Bits 4-7: Ignored 		

Table 4-9: HR Configuration Registers

² In the case of $\pm 16 g$, the measurement range is actually about $\pm 24 g$, with lower accuracy for values outside the $\pm 16 g$ range.

Ox55R to R Interval Averaging Weight Factor1 B FiltBits 0-1: Acceptable values: 0, 1, 2, 3 Bits 2-7: Ignoredrtor_ravg: <value> (unsigned, no unit)20x56R to R Interval Hold Off Scaling Factor1 B Scaling Factor9Bits 0-2: Acceptable values: 0, 1,, 7 Bits 3-7: Ignoredrtor_rhsf: <value> (unsigned, no unit)00x57HR Window Size1 B Size of the HR window (1 sample/LSb) • Acceptable values: 1-10 • Other values: Invalid and ignoredhr_window_size: (unsigned, no unit)30x58HR Step Limit2 B Parameter m window lust00x041E</value></value>	0x54	R to R Minimum Hold Off	1 B	 Bits 0-5 Acceptable values: 0, 1,, 63 	<pre>rtor_hoff: <value> (unsigned, no unit)</value></pre>	30
0X55 R to R interval Averaging Weight Factor 1 B • Bits 0-1: Acceptable values: 0, 1, 2, 3 • Bits 2-7: Ignored (unsigned, no unit) 2 0x56 R to R Interval Hold Off Scaling Factor 1 B • Bits 0-2: Acceptable values: 0, 1,, 7 • Bits 3-7: Ignored rtor_rhsf: <value> (unsigned, no unit) 0 0x57 HR Window Size 1 B • Size of the HR window (1 sample/LSb) • Acceptable values: 1-10 hr_window_size: (unsigned, no unit) 3 0x58 HR Step Limit 2 B • Bits 8-15: Parameter m invalid and ignored hr_step_limit { m: <value>, (unsigned, no unit) 0x 04 1E</value></value>	0,455	D to D Interval Averaging	1.0	Bits 6-7: Ignored	rtor rava. (value)	2
0x56 R to R Interval Hold Off 1 B • Bits 2-7: Ignored rtor_rhsf: <value> (unsigned, no unit) 0 0x56 R to R Interval Hold Off 1 B • Bits 0-2: Acceptable values: 0, 1,, 7 rtor_rhsf: <value> (unsigned, no unit) 0 0x57 HR Window Size 1 B • Size of the HR window (1 sample/LSb) hr_window_size: (unsigned, no unit) 3 0x58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) 0x 04 1E</value></value></value>	0255	Weight Factor	TD	 Bits 0-1: Accentable values: 	(unsigned, no unit)	2
Ox56 R to R Interval Hold Off Scaling Factor 1 B • Bits 2-7: Ignored rtor_rhsf: <value> (unsigned, no unit) 0 Ox57 HR Window Size 1 B • Size of the HR window (1 sample/LSb) • Acceptable values: 1-10 • Other values: Invalid and ignored nr_window_size: <value> (unsigned, no unit) 3 Ox58 HR Step Limit 2 B • Bits 8-15: Parameter m to window in the here hr_step_limit { m: <value>, (unsigned, no unit) Ox 04 1E</value></value></value>		Weight Fuctor		0. 1. 2. 3		
0x56 R to R Interval Hold Off 1 B • Bits 0-2: rtor_rhsf: <value> 0 Scaling Factor 1 B • Bits 0-2: Acceptable values: 0, 1,, 7 (unsigned, no unit) 0 0x57 HR Window Size 1 B • Size of the HR window (1 sample/LSb) hr_window (1 sample/LSb) 3 0x58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) 0x 04 1E</value></value>				• Bits 2-7: Ignored		
Scaling Factor Acceptable values: 0, 1,, 7 • Bits 3-7: Ignored (unsigned, no unit) 0x57 HR Window Size 1 B • Size of the HR window (1 sample/LSb) hr_window_size: <value> (unsigned, no unit) 3 0x58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) 0x 04 1E</value></value>	0x56	R to R Interval Hold Off	1 B	• Bits 0-2:	rtor_rhsf: <value></value>	0
0, 1,, 7 Bits 3-7: Ignored Bits 3-7: Ignored 0x57 HR Window Size 1 B • Size of the HR window (1 sample/LSb) hr_window (1 sample/LSb) • Acceptable values: 1-10 (unsigned, no unit) 3 0x58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) 0x 04 1E</value>		Scaling Factor		Acceptable values:	(unsigned, no unit)	
Ox57 HR Window Size 1 B • Size of the HR window (1 sample/LSb) hr_window_size: <value> (unsigned, no unit) 3 • Acceptable values: 1-10 • Acceptable values: 1-10 1-10 • Other values: Invalid and ignored 3 • Ox58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) 0x 04 1E</value></value>				0, 1,, 7		
0x57 HR Window Size 1 B • Size of the HR window (1 sample/LSb) hr_window_size: 3 • Acceptable values: 1-10 • Acceptable values: (unsigned, no unit) * • Other values: 1-10 • Other values: 1 • Other values: 0 • Ox58 HR Step Limit 2 B • Bits 8-15: hr_step_limit { m: <value>, (unsigned, no unit) Ox 04 1E</value>				• Bits 3-7: Ignored		
window (1 window (1 sample/LSb) (unsigned, no unit) • Acceptable values: 1-10 1-10 • Other values: Invalid and ignored • Bits 8-15: Parameter m m: <value>, (unsigned, no unit)</value>	0x57	HR Window Size	1 B	• Size of the HR	hr_window_size: <value></value>	3
Ox58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) Ox 04 1E</value>				window (1	(unsigned, no unit)	
0x58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) 0x 04 1E</value>				• Accontable values:		
Ox58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) Ox 04 1E</value>				• Acceptable values.		
Ox58 HR Step Limit 2 B • Bits 8-15: Parameter m hr_step_limit { m: <value>, (unsigned, no unit) Ox 04 1E</value>				• Other values:		
Ox58HR Step Limit2 B• Bits 8-15: Parameter mhr_step_limit { m: <value>, (unsigned, no unit)Ox 04 1E</value>				Invalid and ignored		
Parameter mm: <value>, (unsigned, no unit)</value>	0x58	HR Step Limit	2 B	• Bits 8-15:	hr_step_limit {	0x 04 1E
				Parameter <i>m</i>	<pre>m: <value>, (unsigned no unit)</value></pre>	
Acceptable values:				Acceptable values:	(unsigned, no unit)	
1,,15 s: <value>,</value>				1,, 15	s: <value>,</value>	
Other values: (unsigned, no unit)				Other values:	(unsigned, no unit)	
Invalid and ignored				Invalid and ignored	}	
Bits 0-7:				• Bits U-7:		
Parameter s				Parameter s		
				• Acceptable values:		

4.2.7 Command and Control

Configuration changes are not retained after a power cycle unless they are saved in the flash. Table 4-10 shows the structure of the Command-and-Control registers. In this table, the bit indexing scheme is as shown in Figure 4-1.

Table 4-10: Command-and-Control Registers

Address	Access	Name	Size	Description	JSON Variable (Type, Unit)
0x70	W	Flash Write	2 B	• Bit 14:	<pre>write_to_flash {</pre>
		Command		 0/1 = Do not write/Write LoRaMAC Configuration 	app_config: <value>, (unsigned, no unit)</value>
				• Bit 13:	lora_config: <value>, (unsigned, no unit)</value>

				 0/1 = Do not write/Write App SW Configuration Bit 0: 0/1 = Do not restart/Restart Tracker Bits 1-12, 15: Ignored 	restart_sensor: <value> (unsigned, no unit) }</value>
0x71	R	Metadata	4 B	 Bits 24-31: App SW version major Bits 16-23: App SW version minor Bits 8-15: App SW version revision Bits 0-7: LoRaWAN region number (see Section 4.2.7.1) 	<pre>metadata { app_ver_major: <value>, (unsigned, no unit) app_ver_minor: <value>, (unsigned, no unit) app_ver_revision: <value>, (unsigned, no unit) lorawan_region: <value> (unsigned, no unit) }</value></value></value></value></pre>
0x72	W	Reset Configuration Registers to Factory Defaults ³	1 B	 OxOA = Reset App SW Configuration OxBO = Reset LORaMAC Configuration OxBA = Reset both App SW and LORaMAC Configurations Any other value: Invalid and ignored 	<pre>config_factory_reset { app_config: <value>, (unsigned, no unit) loramac_config: <value> (unsigned, no unit) }</value></value></pre>

Note: The Command and Control registers are always executed after the full DL configuration message has been decoded. The reset commands should always be sent as an unconfirmed DL message. Failure to do so may cause a poorly designed NS to continually reboot the Respiratory Sensor.

4.2.7.1 LoRaWAN Region

The LoRaWAN region number is the last byte of the Metadata register (Register 0x71). Current LoRaWAN regions and corresponding region numbers for the Respiratory Sensor are listed in Table 4-11.

Table 4-11: LoRaWAN Regions and Region Numbers

LoRaWAN Region	Region Number
EU868	0
US915	1
AS923	2

³ After sending the reset-to-factory-defaults command, the sensor is automatically reset with corresponding default configuration values.

AU915	3
IN865	4
KR920	6
RU864	7

Examples:

- Write the App SW configuration to the flash
 - DL payload: 0x F0 20 00
- Write the App SW and LoRaMAC configurations to the flash
 - DL payload: 0x F0 60 00
- Reboot the sensor
 - DL payload: 0x F0 00 01
- Get the FW version and LoRaWAN region number, then reset the App SW configuration to factory defaults
 - DL payload: 0x 71 F2 0A

5 Respiratory Sensor and FEA Interface

5.1 UL Direction

This includes the following:

- 1. Periodic reports of the battery and health signs on *LoRaWAN port 10*. The format of these reports and their decoding have been fully explained in Section 3.1.
- Periodic report of metadata. This includes receiving App SW version and LoRaWAN region number information in the form of payloads 0x 71 XX XX XX YY on *LoRaWAN port 100*, as described in Sections 3.2 and 4.2.7. For example, payload 71 01 00 00 01 in hex, or cQEAAAE= in base64, means that the sensor App SW version is 1.0.0 and the sensor LoRaWAN region number is 1 (indicating the US region).

5.2 **DL Direction**

The DL direction includes the configuration and control commands sent from the FEA to the sensor. As the sensor is a LoRaWAN Class A end device, these commands are only received by the sensor upon the sensor uplinking something. These configuration and control commands includes the following:

- 1. Control command to change the sensor mode of reporting, sent on *LoRaWAN port 10*. The use and format of this command has been specified in Section 4.1.
- 2. Configuration and control commands sent on *LoRaWAN port 100* to,
 - a. change the configuration of the sensor
 - b. save the current sensor configuration to its flash
 - c. simply reboot the sensor, or, reboot the sensor to its factory defaults.

References

[1] LoRa Alliance, "LoRaWAN Regional Parameters," ver. 1.0.2, rev. B, Feb 2017.

[2] LoRa Alliance, "LoRaWAN Specification," ver. 1.0.2, Jul 2016.